These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

516 related articles for article (PubMed ID: 23426892)

  • 41. Investigation of protein folding by coarse-grained molecular dynamics with the UNRES force field.
    Maisuradze GG; Senet P; Czaplewski C; Liwo A; Scheraga HA
    J Phys Chem A; 2010 Apr; 114(13):4471-85. PubMed ID: 20166738
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Coarse-grained models of protein folding: toy models or predictive tools?
    Clementi C
    Curr Opin Struct Biol; 2008 Feb; 18(1):10-5. PubMed ID: 18160277
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Protein simulations with an optimized water model: cooperative helix formation and temperature-induced unfolded state collapse.
    Best RB; Mittal J
    J Phys Chem B; 2010 Nov; 114(46):14916-23. PubMed ID: 21038907
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification of characteristic protein folding channels in a coarse-grained hydrophobic-polar peptide model.
    Schnabel S; Bachmann M; Janke W
    J Chem Phys; 2007 Mar; 126(10):105102. PubMed ID: 17362088
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Large-scale context in protein folding: villin headpiece.
    Fernández A; Shen MY; Colubri A; Sosnick TR; Berry RS; Freed KF
    Biochemistry; 2003 Jan; 42(3):664-71. PubMed ID: 12534278
    [TBL] [Abstract][Full Text] [Related]  

  • 46. D/H amide kinetic isotope effects reveal when hydrogen bonds form during protein folding.
    Krantz BA; Moran LB; Kentsis A; Sosnick TR
    Nat Struct Biol; 2000 Jan; 7(1):62-71. PubMed ID: 10625430
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Protein folding simulations: from coarse-grained model to all-atom model.
    Zhang J; Li W; Wang J; Qin M; Wu L; Yan Z; Xu W; Zuo G; Wang W
    IUBMB Life; 2009 Jun; 61(6):627-43. PubMed ID: 19472192
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Coarse-grained lattice model simulations of sequence-structure fitness of a ribosome-inactivating protein.
    Olson MA; Yeh IC; Lee MS
    Biopolymers; 2008 Feb; 89(2):153-9. PubMed ID: 17985366
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of desolvation barriers and sidechains on local-nonlocal coupling and chevron behaviors in coarse-grained models of protein folding.
    Chen T; Chan HS
    Phys Chem Chem Phys; 2014 Apr; 16(14):6460-79. PubMed ID: 24554086
    [TBL] [Abstract][Full Text] [Related]  

  • 50. From coarse-grained to atomic-level characterization of protein dynamics: transition state for the folding of B domain of protein A.
    Kmiecik S; Gront D; Kouza M; Kolinski A
    J Phys Chem B; 2012 Jun; 116(23):7026-32. PubMed ID: 22486297
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ab initio folding of helix bundle proteins using molecular dynamics simulations.
    Jang S; Kim E; Shin S; Pak Y
    J Am Chem Soc; 2003 Dec; 125(48):14841-6. PubMed ID: 14640661
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Folding simulations of Trp-cage mini protein in explicit solvent using biasing potential replica-exchange molecular dynamics simulations.
    Kannan S; Zacharias M
    Proteins; 2009 Aug; 76(2):448-60. PubMed ID: 19173315
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Coarse-grained models for protein folding and aggregation.
    Derreumaux P
    Methods Mol Biol; 2013; 924():585-600. PubMed ID: 23034764
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Interactions between a helical residue and tertiary structures: helix propensities in small peptides and in native proteins.
    Qian H; Chan SI
    J Mol Biol; 1996 Aug; 261(2):279-88. PubMed ID: 8757294
    [TBL] [Abstract][Full Text] [Related]  

  • 55. How Well Can Implicit Solvent Simulations Explore Folding Pathways? A Quantitative Analysis of α-Helix Bundle Proteins.
    Shao Q; Zhu W
    J Chem Theory Comput; 2017 Dec; 13(12):6177-6190. PubMed ID: 29120630
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Theory of the molecular transfer model for proteins with applications to the folding of the src-SH3 domain.
    Liu Z; Reddy G; Thirumalai D
    J Phys Chem B; 2012 Jun; 116(23):6707-16. PubMed ID: 22497652
    [TBL] [Abstract][Full Text] [Related]  

  • 57. How fast-folding proteins fold.
    Lindorff-Larsen K; Piana S; Dror RO; Shaw DE
    Science; 2011 Oct; 334(6055):517-20. PubMed ID: 22034434
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Non-native local interactions in protein folding and stability: introducing a helical tendency in the all beta-sheet alpha-spectrin SH3 domain.
    Prieto J; Wilmans M; Jiménez MA; Rico M; Serrano L
    J Mol Biol; 1997 May; 268(4):760-78. PubMed ID: 9175859
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structural effects of an atomic-level layer of water molecules around proteins solvated in supra-molecular coarse-grained water.
    Riniker S; Eichenberger AP; van Gunsteren WF
    J Phys Chem B; 2012 Aug; 116(30):8873-9. PubMed ID: 22816513
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Protein folding simulation with solvent-induced force field: folding pathway ensemble of three-helix-bundle proteins.
    Takada S
    Proteins; 2001 Jan; 42(1):85-98. PubMed ID: 11093263
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.