BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 23427054)

  • 21. Characterization of phytochemical components of Ferula halophila extracts using HPLC-MS/MS and their pharmacological potentials: a multi-functional insight.
    Zengin G; Uysal A; Diuzheva A; Gunes E; Jekő J; Cziáky Z; Picot-Allain CMN; Mahomoodally MF
    J Pharm Biomed Anal; 2018 Oct; 160():374-382. PubMed ID: 30121555
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ferulone A and ferulone B: two new coumarin esters from Ferula orientalis L. roots.
    Razavi SM; Nahar L; Talischi H; Sarker SD
    Nat Prod Res; 2016 Oct; 30(19):2183-9. PubMed ID: 26988734
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of some Bioactive Metabolites in a Fractionated Methanol Extract from Ipomoea aquatica (Aerial Parts) through TLC, HPLC, UPLC-ESI-QTOF-MS and LC-SPE-NMR Fingerprints Analyses.
    Hefny Gad M; Tuenter E; El-Sawi N; Younes S; El-Ghadban EM; Demeyer K; Pieters L; Vander Heyden Y; Mangelings D
    Phytochem Anal; 2018 Jan; 29(1):5-15. PubMed ID: 28776774
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Screening and identification of acetylcholinesterase inhibitors from Terminalia chebula fruits by immobilized enzyme on cellulose filter paper coupled with ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry and molecular docking.
    Li YJ; He FQ; Zhao HH; Li Y; Chen J
    J Chromatogr A; 2022 Jan; 1663():462784. PubMed ID: 34974370
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Asimafoetidnol: a new sesquiterpenoid coumarin from the gum resin of Ferula assa-foetida.
    Bandyopadhyay D; Banerjeeb M; Laskar S; Basak B
    Nat Prod Commun; 2011 Feb; 6(2):209-12. PubMed ID: 21425676
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Alkaloids of Amaryllidaceae as Inhibitors of Cholinesterases (AChEs and BChEs): An Integrated Bioguided Study.
    Cortes N; Sierra K; Alzate F; Osorio EH; Osorio E
    Phytochem Anal; 2018 Mar; 29(2):217-227. PubMed ID: 29044771
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vitro antioxidant assessment and a rapid HPTLC bioautographic method for the detection of anticholinesterase inhibitory activity of Geophila repens.
    Dash UC; Sahoo AK
    J Integr Med; 2017 May; 15(3):231-241. PubMed ID: 28494853
    [TBL] [Abstract][Full Text] [Related]  

  • 28. At-line LC-QTOF-MS micro-fractionation of Derris scandens (Roxb.) Benth, coupled to radioassay for the early identification of PDE5A1 inhibitors.
    Bhandari S; Nuengchamnong N; Chaichamnong N; Seasong T; Ingkaninan K; Temkitthawon P
    Phytochem Anal; 2020 May; 31(3):297-305. PubMed ID: 31777141
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sesquiterpene coumarins from Ferula szowitsiana and in vitro antileishmanial activity of 7-prenyloxycoumarins against promastigotes.
    Iranshahi M; Arfa P; Ramezani M; Jaafari MR; Sadeghian H; Bassarello C; Piacente S; Pizza C
    Phytochemistry; 2007 Feb; 68(4):554-61. PubMed ID: 17196626
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Screening of medicinal plants from Iranian traditional medicine for acetylcholinesterase inhibition.
    Adhami HR; Farsam H; Krenn L
    Phytother Res; 2011 Aug; 25(8):1148-52. PubMed ID: 21287652
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Guided isolation of new iridoid glucosides from Anarrhinum pubescens by high-performance thin-layer chromatography-acetylcholinesterase assay.
    Mahran E; Morlock GE; Keusgen M
    J Chromatogr A; 2020 Jan; 1609():460438. PubMed ID: 31447207
    [TBL] [Abstract][Full Text] [Related]  

  • 32. NMR-based metabolomic study of asafoetida.
    Farhadi F; Asili J; Iranshahy M; Iranshahi M
    Fitoterapia; 2019 Nov; 139():104361. PubMed ID: 31629871
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exploring potential inhibitors of acetylcholinesterase, lactate dehydrogenases, and glutathione reductase from Hagenia abyssinica (Bruce) J.F. Gmel. based on multi-target ultrafiltration-liquid chromatography-mass spectrometry and molecular docking.
    Fan M; Guo M; Chen G; Rakotondrabe TF; Muema FW; Hu G
    J Ethnopharmacol; 2024 Oct; 332():118356. PubMed ID: 38763372
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of non-alkaloid acetylcholinesterase inhibitors from Ferulago campestris (Besser) Grecescu (Apiaceae).
    Dall'Acqua S; Maggi F; Minesso P; Salvagno M; Papa F; Vittori S; Innocenti G
    Fitoterapia; 2010 Dec; 81(8):1208-12. PubMed ID: 20713133
    [TBL] [Abstract][Full Text] [Related]  

  • 35. HPTLC Bioautography Guided Isolation of α-Glucosidase Inhibiting Compounds from Justicia secunda Vahl (Acanthaceae).
    Theiler BA; Istvanits S; Zehl M; Marcourt L; Urban E; Caisa LO; Glasl S
    Phytochem Anal; 2017 Mar; 28(2):87-92. PubMed ID: 27910158
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Epimediphine, a novel alkaloid from Epimedium koreanum inhibits acetylcholinesterase.
    Zhang X; Oh M; Kim S; Kim J; Kim H; Kim S; Houghton PJ; Whang W
    Nat Prod Res; 2013; 27(12):1067-74. PubMed ID: 22823459
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of bioactive compounds from Ficus carica L. leaf extracts via high-performance thin-layer chromatography combined with effect-directed analysis.
    Agatonovic-Kustrin S; Wong S; Dolzhenko AV; Gegechkori V; Ku H; Tucci J; Morton DW
    J Chromatogr A; 2023 Sep; 1706():464241. PubMed ID: 37541060
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-performance liquid chromatography-mass spectrometry-based acetylcholinesterase assay for the screening of inhibitors in natural extracts.
    de Jong CF; Derks RJ; Bruyneel B; Niessen W; Irth H
    J Chromatogr A; 2006 Apr; 1112(1-2):303-10. PubMed ID: 16516896
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Online acetylcholinesterase inhibition evaluation by high-performance liquid chromatography-mass spectrometry hyphenated with an immobilized enzyme reactor.
    Yuan Y; Zhao M; Riffault-Valois L; Ennahar S; Bergaentzlé M; Marchioni E
    J Chromatogr A; 2020 Jan; 1609():460506. PubMed ID: 31526637
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular recognition of rosmarinic acid from Salvia sclareoides extracts by acetylcholinesterase: a new binding site detected by NMR spectroscopy.
    Marcelo F; Dias C; Martins A; Madeira PJ; Jorge T; Florêncio MH; Cañada FJ; Cabrita EJ; Jiménez-Barbero J; Rauter AP
    Chemistry; 2013 May; 19(21):6641-9. PubMed ID: 23536497
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.