These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 23427094)

  • 1. Experimental insights into flow impingement in cerebral aneurysm by stereoscopic particle image velocimetry: transition from a laminar regime.
    Yagi T; Sato A; Shinke M; Takahashi S; Tobe Y; Takao H; Murayama Y; Umezu M
    J R Soc Interface; 2013 May; 10(82):20121031. PubMed ID: 23427094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow instability and wall shear stress variation in intracranial aneurysms.
    Baek H; Jayaraman MV; Richardson PD; Karniadakis GE
    J R Soc Interface; 2010 Jun; 7(47):967-88. PubMed ID: 20022896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct numerical simulation of transitional flow in a patient-specific intracranial aneurysm.
    Valen-Sendstad K; Mardal KA; Mortensen M; Reif BA; Langtangen HP
    J Biomech; 2011 Nov; 44(16):2826-32. PubMed ID: 21924724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peak systolic or maximum intra-aneurysmal hemodynamic condition? Implications on normalized flow variables.
    Morales HG; Bonnefous O
    J Biomech; 2014 Jul; 47(10):2362-70. PubMed ID: 24861633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Timing and size of flow impingement in a giant intracranial aneurysm at the internal carotid artery.
    Jou LD; Mawad ME
    Med Biol Eng Comput; 2011 Aug; 49(8):891-9. PubMed ID: 21210303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids.
    Frolov SV; Sindeev SV; Liepsch D; Balasso A
    Technol Health Care; 2016 May; 24(3):317-33. PubMed ID: 26835725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental study of steady and pulsatile flows in cerebral aneurysm model of various sizes at branching site.
    Liou TM; Chang WC; Liao CC
    J Biomech Eng; 1997 Aug; 119(3):325-32. PubMed ID: 9285346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Vitro Assessment of Flow Variability in an Intracranial Aneurysm Model Using 4D Flow MRI and Tomographic PIV.
    Medero R; Falk K; Rutkowski D; Johnson K; Roldán-Alzate A
    Ann Biomed Eng; 2020 Oct; 48(10):2484-2493. PubMed ID: 32524379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of elasticity on wall shear stress inside cerebral aneurysm at anterior cerebral artery.
    Xu L; Sugawara M; Tanaka G; Ohta M; Liu H; Yamaguchi R
    Technol Health Care; 2016 May; 24(3):349-57. PubMed ID: 26835728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intra-aneurysmal flow patterns and wall shear stresses calculated with computational flow dynamics in an anterior communicating artery aneurysm depend on knowledge of patient-specific inflow rates.
    Karmonik C; Yen C; Grossman RG; Klucznik R; Benndorf G
    Acta Neurochir (Wien); 2009 May; 151(5):479-85; discussion 485. PubMed ID: 19343271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hemodynamic and morphological characteristics of a growing cerebral aneurysm.
    Dabagh M; Nair P; Gounley J; Frakes D; Gonzalez LF; Randles A
    Neurosurg Focus; 2019 Jul; 47(1):E13. PubMed ID: 31261117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-modality cerebral aneurysm haemodynamic analysis:
    Brindise MC; Rothenberger S; Dickerhoff B; Schnell S; Markl M; Saloner D; Rayz VL; Vlachos PP
    J R Soc Interface; 2019 Sep; 16(158):20190465. PubMed ID: 31506043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of size and elasticity on the relation between flow velocity and wall shear stress in side-wall aneurysms: A lattice Boltzmann-based computer simulation study.
    Wang H; Krüger T; Varnik F
    PLoS One; 2020; 15(1):e0227770. PubMed ID: 31945111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of aneurysm geometry on the intra-aneurysmal flow condition.
    Tateshima S; Chien A; Sayre J; Cebral J; Viñuela F
    Neuroradiology; 2010 Dec; 52(12):1135-41. PubMed ID: 20373097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blood flow dynamics in patient-specific cerebral aneurysm models: the relationship between wall shear stress and aneurysm area index.
    Valencia A; Morales H; Rivera R; Bravo E; Galvez M
    Med Eng Phys; 2008 Apr; 30(3):329-40. PubMed ID: 17556005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Newtonian viscosity model could overestimate wall shear stress in intracranial aneurysm domes and underestimate rupture risk.
    Xiang J; Tremmel M; Kolega J; Levy EI; Natarajan SK; Meng H
    J Neurointerv Surg; 2012 Sep; 4(5):351-7. PubMed ID: 21990529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of stent porosity on hemodynamics in a sidewall aneurysm model.
    Liou TM; Li YC
    J Biomech; 2008; 41(6):1174-83. PubMed ID: 18377914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Repression of wall shear stress inside cerebral aneurysm at bifurcation of anterior cerebral artery by stents.
    Yamaguchi R; Tanaka G; Liu H; Ujiie H
    Heart Vessels; 2016 Apr; 31(4):622-7. PubMed ID: 25813684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wall shear stress gradient is independently associated with middle cerebral artery aneurysm development: a case-control CFD patient-specific study based on 77 patients.
    Zimny M; Kawlewska E; Hebda A; Wolański W; Ładziński P; Kaspera W
    BMC Neurol; 2021 Jul; 21(1):281. PubMed ID: 34281533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pulsatile flow effects on the hemodynamics of intracranial aneurysms.
    Le TB; Borazjani I; Sotiropoulos F
    J Biomech Eng; 2010 Nov; 132(11):111009. PubMed ID: 21034150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.