BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 23427112)

  • 1. Ultrathin PEGylated W18O49 nanowires as a new 980 nm-laser-driven photothermal agent for efficient ablation of cancer cells in vivo.
    Chen Z; Wang Q; Wang H; Zhang L; Song G; Song L; Hu J; Wang H; Liu J; Zhu M; Zhao D
    Adv Mater; 2013 Apr; 25(14):2095-100. PubMed ID: 23427112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photosensitization of singlet oxygen and in vivo photodynamic therapeutic effects mediated by PEGylated W(18)O(49) nanowires.
    Kalluru P; Vankayala R; Chiang CS; Hwang KC
    Angew Chem Int Ed Engl; 2013 Nov; 52(47):12332-6. PubMed ID: 24136871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of photothermal performance of hydrophilic W
    Xu W; Tian Q; Chen Z; Xia M; Macharia DK; Sun B; Tian L; Wang Y; Zhu M
    J Mater Chem B; 2014 Sep; 2(34):5594-5601. PubMed ID: 32262193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PEGylated Copper Nanowires as a Novel Photothermal Therapy Agent.
    Li KC; Chu HC; Lin Y; Tuan HY; Hu YC
    ACS Appl Mater Interfaces; 2016 May; 8(19):12082-90. PubMed ID: 27111420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lentinan in-situ coated tungsten oxide nanorods as a nanotherapeutic agent for low power density photothermal cancer therapy.
    Tian Y; Yi W; Bai L; Zhang P; Si J; Hou X; Deng Y; Hou J
    Int J Biol Macromol; 2019 Sep; 137():904-911. PubMed ID: 31252011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PEGylated (NH
    Macharia DK; Tian Q; Chen L; Sun Y; Yu N; He C; Wang H; Chen Z
    J Photochem Photobiol B; 2017 Sep; 174():10-17. PubMed ID: 28750318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of WS2 Nanowires as Efficient 808 nm-Laser-Driven Photothermal Nanoagents.
    Macharia DK; Yu N; Zhong R; Xiao Z; Yang J; Chen Z
    J Nanosci Nanotechnol; 2016 Jun; 16(6):5865-8. PubMed ID: 27427645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-assembled WO3-x hierarchical nanostructures for photothermal therapy with a 915 nm laser rather than the common 980 nm laser.
    Li B; Zhang Y; Zou R; Wang Q; Zhang B; An L; Yin F; Hua Y; Hu J
    Dalton Trans; 2014 Apr; 43(16):6244-50. PubMed ID: 24598863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photothermal ablation cancer therapy using homogeneous CsxWO3 nanorods with broad near-infra-red absorption.
    Guo C; Yin S; Yu H; Liu S; Dong Q; Goto T; Zhang Z; Li Y; Sato T
    Nanoscale; 2013 Jul; 5(14):6469-78. PubMed ID: 23743996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo near-infrared photothermal therapy and computed tomography imaging of cancer cells using novel tungsten-based theranostic probe.
    Liu J; Han J; Kang Z; Golamaully R; Xu N; Li H; Han X
    Nanoscale; 2014 Jun; 6(11):5770-6. PubMed ID: 24736832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Na0.3WO3 nanorods: a multifunctional agent for in vivo dual-model imaging and photothermal therapy of cancer cells.
    Zhang Y; Li B; Cao Y; Qin J; Peng Z; Xiao Z; Huang X; Zou R; Hu J
    Dalton Trans; 2015 Feb; 44(6):2771-9. PubMed ID: 25468402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning the NIR photoabsorption of CuWO
    Wen M; Wang S; Jiang R; Wang Y; Wang Z; Yu W; Geng P; Xia J; Li M; Chen Z
    Biomater Sci; 2019 Nov; 7(11):4651-4660. PubMed ID: 31464303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tungsten oxide nanorods: an efficient nanoplatform for tumor CT imaging and photothermal therapy.
    Zhou Z; Kong B; Yu C; Shi X; Wang M; Liu W; Sun Y; Zhang Y; Yang H; Yang S
    Sci Rep; 2014 Jan; 4():3653. PubMed ID: 24413483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intrinsically Mn2+-Chelated Polydopamine Nanoparticles for Simultaneous Magnetic Resonance Imaging and Photothermal Ablation of Cancer Cells.
    Miao ZH; Wang H; Yang H; Li ZL; Zhen L; Xu CY
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):16946-52. PubMed ID: 26196160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An efficient nano-based theranostic system for multi-modal imaging-guided photothermal sterilization in gastrointestinal tract.
    Liu Z; Liu J; Wang R; Du Y; Ren J; Qu X
    Biomaterials; 2015 Jul; 56():206-18. PubMed ID: 25934293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PEGylated nickel carbide nanocrystals as efficient near-infrared laser induced photothermal therapy for treatment of cancer cells in vivo.
    Zhou Z; Wang J; Liu W; Yu C; Kong B; Sun Y; Yang H; Yang S; Wang W
    Nanoscale; 2014 Nov; 6(21):12591-600. PubMed ID: 25184661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile synthesis of urchin-like LaWO
    Sun L; Shi Y; Tang M; Wang D; Tian Y; Li J
    Nanoscale; 2019 Aug; 11(30):14237-14241. PubMed ID: 31317999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power.
    Yang K; Wan J; Zhang S; Tian B; Zhang Y; Liu Z
    Biomaterials; 2012 Mar; 33(7):2206-14. PubMed ID: 22169821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ce-Doped W
    Yang J; Ruan Z; Jiang S; Xia P; Yang Q; Zhang Q; Xiao C; Xie Y
    J Phys Chem Lett; 2021 Nov; 12(46):11295-11302. PubMed ID: 34779639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo.
    Tian Q; Jiang F; Zou R; Liu Q; Chen Z; Zhu M; Yang S; Wang J; Wang J; Hu J
    ACS Nano; 2011 Dec; 5(12):9761-71. PubMed ID: 22059851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.