BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 23427142)

  • 1. Loss of WNK3 is compensated for by the WNK1/SPAK axis in the kidney of the mouse.
    Mederle K; Mutig K; Paliege A; Carota I; Bachmann S; Castrop H; Oppermann M
    Am J Physiol Renal Physiol; 2013 May; 304(9):F1198-209. PubMed ID: 23427142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. WNK3 kinase is a positive regulator of NKCC2 and NCC, renal cation-Cl- cotransporters required for normal blood pressure homeostasis.
    Rinehart J; Kahle KT; de Los Heros P; Vazquez N; Meade P; Wilson FH; Hebert SC; Gimenez I; Gamba G; Lifton RP
    Proc Natl Acad Sci U S A; 2005 Nov; 102(46):16777-82. PubMed ID: 16275913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of heterozygous deletion of WNK1 on the WNK-OSR1/ SPAK-NCC/NKCC1/NKCC2 signal cascade in the kidney and blood vessels.
    Susa K; Kita S; Iwamoto T; Yang SS; Lin SH; Ohta A; Sohara E; Rai T; Sasaki S; Alessi DR; Uchida S
    Clin Exp Nephrol; 2012 Aug; 16(4):530-8. PubMed ID: 22294159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. WNK-SPAK-NCC cascade revisited: WNK1 stimulates the activity of the Na-Cl cotransporter via SPAK, an effect antagonized by WNK4.
    Chávez-Canales M; Zhang C; Soukaseum C; Moreno E; Pacheco-Alvarez D; Vidal-Petiot E; Castañeda-Bueno M; Vázquez N; Rojas-Vega L; Meermeier NP; Rogers S; Jeunemaitre X; Yang CL; Ellison DH; Gamba G; Hadchouel J
    Hypertension; 2014 Nov; 64(5):1047-53. PubMed ID: 25113964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A minor role of WNK3 in regulating phosphorylation of renal NKCC2 and NCC co-transporters in vivo.
    Oi K; Sohara E; Rai T; Misawa M; Chiga M; Alessi DR; Sasaki S; Uchida S
    Biol Open; 2012 Feb; 1(2):120-7. PubMed ID: 23213404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cotransporters, WNKs and hypertension: an update.
    Flatman PW
    Curr Opin Nephrol Hypertens; 2008 Mar; 17(2):186-92. PubMed ID: 18277153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of NCC activity by low and high K(+) intake: insights into the signaling pathways involved.
    Castañeda-Bueno M; Cervantes-Perez LG; Rojas-Vega L; Arroyo-Garza I; Vázquez N; Moreno E; Gamba G
    Am J Physiol Renal Physiol; 2014 Jun; 306(12):F1507-19. PubMed ID: 24761002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. WNK3, a kinase related to genes mutated in hereditary hypertension with hyperkalaemia, regulates the K+ channel ROMK1 (Kir1.1).
    Leng Q; Kahle KT; Rinehart J; MacGregor GG; Wilson FH; Canessa CM; Lifton RP; Hebert SC
    J Physiol; 2006 Mar; 571(Pt 2):275-86. PubMed ID: 16357011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of NKCC2 by a chloride-sensing mechanism involving the WNK3 and SPAK kinases.
    Ponce-Coria J; San-Cristobal P; Kahle KT; Vazquez N; Pacheco-Alvarez D; de Los Heros P; Juárez P; Muñoz E; Michel G; Bobadilla NA; Gimenez I; Lifton RP; Hebert SC; Gamba G
    Proc Natl Acad Sci U S A; 2008 Jun; 105(24):8458-63. PubMed ID: 18550832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of WNK3 Kinase Signaling Reduces Brain Damage and Accelerates Neurological Recovery After Stroke.
    Begum G; Yuan H; Kahle KT; Li L; Wang S; Shi Y; Shmukler BE; Yang SS; Lin SH; Alper SL; Sun D
    Stroke; 2015 Jul; 46(7):1956-1965. PubMed ID: 26069258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A SPAK isoform switch modulates renal salt transport and blood pressure.
    McCormick JA; Mutig K; Nelson JH; Saritas T; Hoorn EJ; Yang CL; Rogers S; Curry J; Delpire E; Bachmann S; Ellison DH
    Cell Metab; 2011 Sep; 14(3):352-64. PubMed ID: 21907141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unique chloride-sensing properties of WNK4 permit the distal nephron to modulate potassium homeostasis.
    Terker AS; Zhang C; Erspamer KJ; Gamba G; Yang CL; Ellison DH
    Kidney Int; 2016 Jan; 89(1):127-34. PubMed ID: 26422504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. WNK3-SPAK interaction is required for the modulation of NCC and other members of the SLC12 family.
    Pacheco-Alvarez D; Vázquez N; Castañeda-Bueno M; de-Los-Heros P; Cortes-González C; Moreno E; Meade P; Bobadilla NA; Gamba G
    Cell Physiol Biochem; 2012; 29(1-2):291-302. PubMed ID: 22415098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of the NKCC2 ion cotransporter by SPAK-OSR1-dependent and -independent pathways.
    Richardson C; Sakamoto K; de los Heros P; Deak M; Campbell DG; Prescott AR; Alessi DR
    J Cell Sci; 2011 Mar; 124(Pt 5):789-800. PubMed ID: 21321328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Renal function in mice with targeted disruption of the A isoform of the Na-K-2Cl co-transporter.
    Oppermann M; Mizel D; Kim SM; Chen L; Faulhaber-Walter R; Huang Y; Li C; Deng C; Briggs J; Schnermann J; Castrop H
    J Am Soc Nephrol; 2007 Feb; 18(2):440-8. PubMed ID: 17215439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of ClC-K and barttin in low potassium-induced sodium chloride cotransporter activation and hypertension in mouse kidney.
    Nomura N; Shoda W; Wang Y; Mandai S; Furusho T; Takahashi D; Zeniya M; Sohara E; Rai T; Uchida S
    Biosci Rep; 2018 Feb; 38(1):. PubMed ID: 29326302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Renal NCC is unchanged in the midpregnant rat and decreased in the late pregnant rat despite avid renal Na+ retention.
    West CA; McDonough AA; Masilamani SM; Verlander JW; Baylis C
    Am J Physiol Renal Physiol; 2015 Jul; 309(1):F63-70. PubMed ID: 25925254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altered expression of regulators of the cortical chloride transporters NKCC1 and KCC2 in schizophrenia.
    Arion D; Lewis DA
    Arch Gen Psychiatry; 2011 Jan; 68(1):21-31. PubMed ID: 20819979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced FGF23 serum concentrations and phosphaturia in gene targeted mice expressing WNK-resistant SPAK.
    Pathare G; Föller M; Michael D; Walker B; Hierlmeier M; Mannheim JG; Pichler BJ; Lang F
    Kidney Blood Press Res; 2012; 36(1):355-64. PubMed ID: 23235437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. WNK kinases regulate thiazide-sensitive Na-Cl cotransport.
    Yang CL; Angell J; Mitchell R; Ellison DH
    J Clin Invest; 2003 Apr; 111(7):1039-45. PubMed ID: 12671053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.