These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 23427142)

  • 61. WNK3 kinase maintains neuronal excitability by reducing inwardly rectifying K
    Sinha AS; Wang T; Watanabe M; Hosoi Y; Sohara E; Akita T; Uchida S; Fukuda A
    Front Mol Neurosci; 2022; 15():856262. PubMed ID: 36311015
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Kidney ion handling genes and their interaction in blood pressure control.
    An C; Yang L; Han T; Song H; Li Z; Zhang J; Zhang K
    Biosci Rep; 2022 Nov; 42(11):. PubMed ID: 36305246
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Bartter's syndrome: clinical findings, genetic causes and therapeutic approach.
    Mrad FCC; Soares SBM; de Menezes Silva LAW; Dos Anjos Menezes PV; Simões-E-Silva AC
    World J Pediatr; 2021 Feb; 17(1):31-39. PubMed ID: 32488762
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Regulation of NKCC2B by TNF-α in response to salt restriction.
    Hao S; Salzo J; Hao M; Ferreri NR
    Am J Physiol Renal Physiol; 2020 Jan; 318(1):F273-F282. PubMed ID: 31813248
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Molecular regulation of NKCC2 in blood pressure control and hypertension.
    Caceres PS; Ortiz PA
    Curr Opin Nephrol Hypertens; 2019 Sep; 28(5):474-480. PubMed ID: 31313674
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The Drosophila Malpighian tubule as a model for mammalian tubule function.
    Rodan AR
    Curr Opin Nephrol Hypertens; 2019 Sep; 28(5):455-464. PubMed ID: 31268918
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The WNK-SPAK/OSR1 Kinases and the Cation-Chloride Cotransporters as Therapeutic Targets for Neurological Diseases.
    Huang H; Song S; Banerjee S; Jiang T; Zhang J; Kahle KT; Sun D; Zhang Z
    Aging Dis; 2019 Jun; 10(3):626-636. PubMed ID: 31165006
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The interplay of renal potassium and sodium handling in blood pressure regulation: critical role of the WNK-SPAK-NCC pathway.
    Wu A; Wolley M; Stowasser M
    J Hum Hypertens; 2019 Jul; 33(7):508-523. PubMed ID: 30723251
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Role of renal transporters and novel regulatory interactions in the TAL that control blood pressure.
    Graham LA; Dominiczak AF; Ferreri NR
    Physiol Genomics; 2017 May; 49(5):261-276. PubMed ID: 28389525
    [TBL] [Abstract][Full Text] [Related]  

  • 70. WNK Kinases in Development and Disease.
    Rodan AR; Jenny A
    Curr Top Dev Biol; 2017; 123():1-47. PubMed ID: 28236964
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Hypertension: the missing WNKs.
    Dbouk HA; Huang CL; Cobb MH
    Am J Physiol Renal Physiol; 2016 Jul; 311(1):F16-27. PubMed ID: 27009339
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Deletion of the WNK3-SPAK kinase complex in mice improves radiographic and clinical outcomes in malignant cerebral edema after ischemic stroke.
    Zhao H; Nepomuceno R; Gao X; Foley LM; Wang S; Begum G; Zhu W; Pigott VM; Falgoust LM; Kahle KT; Yang SS; Lin SH; Alper SL; Hitchens TK; Hu S; Zhang Z; Sun D
    J Cereb Blood Flow Metab; 2017 Feb; 37(2):550-563. PubMed ID: 26861815
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Inhibition of WNK3 Kinase Signaling Reduces Brain Damage and Accelerates Neurological Recovery After Stroke.
    Begum G; Yuan H; Kahle KT; Li L; Wang S; Shi Y; Shmukler BE; Yang SS; Lin SH; Alper SL; Sun D
    Stroke; 2015 Jul; 46(7):1956-1965. PubMed ID: 26069258
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Revisiting the NaCl cotransporter regulation by with-no-lysine kinases.
    Bazúa-Valenti S; Gamba G
    Am J Physiol Cell Physiol; 2015 May; 308(10):C779-91. PubMed ID: 25788573
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Distal convoluted tubule.
    McCormick JA; Ellison DH
    Compr Physiol; 2015 Jan; 5(1):45-98. PubMed ID: 25589264
    [TBL] [Abstract][Full Text] [Related]  

  • 76. WNK-SPAK-NCC cascade revisited: WNK1 stimulates the activity of the Na-Cl cotransporter via SPAK, an effect antagonized by WNK4.
    Chávez-Canales M; Zhang C; Soukaseum C; Moreno E; Pacheco-Alvarez D; Vidal-Petiot E; Castañeda-Bueno M; Vázquez N; Rojas-Vega L; Meermeier NP; Rogers S; Jeunemaitre X; Yang CL; Ellison DH; Gamba G; Hadchouel J
    Hypertension; 2014 Nov; 64(5):1047-53. PubMed ID: 25113964
    [TBL] [Abstract][Full Text] [Related]  

  • 77. WNK4 is the major WNK positively regulating NCC in the mouse kidney.
    Takahashi D; Mori T; Nomura N; Khan MZ; Araki Y; Zeniya M; Sohara E; Rai T; Sasaki S; Uchida S
    Biosci Rep; 2014 May; 34(3):. PubMed ID: 24655003
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Current view on the functional regulation of the neuronal K(+)-Cl(-) cotransporter KCC2.
    Medina I; Friedel P; Rivera C; Kahle KT; Kourdougli N; Uvarov P; Pellegrino C
    Front Cell Neurosci; 2014; 8():27. PubMed ID: 24567703
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Loss of WNK3 is compensated for by the WNK1/SPAK axis in the kidney of the mouse.
    Mederle K; Mutig K; Paliege A; Carota I; Bachmann S; Castrop H; Oppermann M
    Am J Physiol Renal Physiol; 2013 May; 304(9):F1198-209. PubMed ID: 23427142
    [TBL] [Abstract][Full Text] [Related]  

  • 80.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.