These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 2342780)

  • 21. Experimental studies on cataract.
    van Heyningen R
    Invest Ophthalmol Vis Sci; 1976 Sep; 15(9):685-97. PubMed ID: 961716
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Morphological and biochemical changes in lenses of guinea pigs after vitamin-C-deficient diet and UV-B radiation.
    Malik A; Kojima M; Sasaki K
    Ophthalmic Res; 1995; 27(4):189-96. PubMed ID: 8538997
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of ascorbic acid in senile cataract.
    Bensch KG; Fleming JE; Lohmann W
    Proc Natl Acad Sci U S A; 1985 Nov; 82(21):7193-6. PubMed ID: 3864154
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses.
    Harrington V; Srivastava OP; Kirk M
    Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Clinico-biochemical study of experimental complicated cataracts.
    Sihota R; Mohan M; Angra SK; Mathur RL
    Indian J Ophthalmol; 1991; 39(4):148-50. PubMed ID: 1810872
    [TBL] [Abstract][Full Text] [Related]  

  • 26. LC-MS display of the total modified amino acids in cataract lens proteins and in lens proteins glycated by ascorbic acid in vitro.
    Cheng R; Feng Q; Ortwerth BJ
    Biochim Biophys Acta; 2006 May; 1762(5):533-43. PubMed ID: 16540295
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Increased susceptibility to metal catalysed oxidation of diabetic lens beta L crystallin: possible protection by dietary supplementation with acetylsalicylic acid.
    Jones RH; Hothersall JS
    Exp Eye Res; 1993 Dec; 57(6):783-90. PubMed ID: 8150030
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Relationships between acetone, cataracts, and ascorbate in hairless guinea pigs.
    Taylor A; Smith DE; Palmer VJ; Shepard D; Padhye N; Theriault C; Morrow F
    Ophthalmic Res; 1993; 25(1):30-5. PubMed ID: 8446366
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Calcium activated proteolysis and protein modification in the U18666A cataract.
    Chandrasekher G; Cenedella RJ
    Exp Eye Res; 1993 Dec; 57(6):737-45. PubMed ID: 8150025
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Relationship between dietary intake and tissue levels of reduced and total vitamin C in the nonscorbutic guinea pig.
    Berger J; Shepard D; Morrow F; Taylor A
    J Nutr; 1989 May; 119(5):734-40. PubMed ID: 2723822
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reduced and total ascorbate in guinea pig eye tissues in response to dietary intake.
    Berger J; Shephard D; Morrow F; Sadowski J; Haire T; Taylor A
    Curr Eye Res; 1988 Jul; 7(7):681-6. PubMed ID: 3416622
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spontaneous generation of superoxide anion by human lens proteins and by calf lens proteins ascorbylated in vitro.
    Linetsky M; James HL; Ortwerth BJ
    Exp Eye Res; 1999 Aug; 69(2):239-48. PubMed ID: 10433859
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cataract and the acceleration of calpain-induced beta-crystallin insolubilization occurring during normal maturation of rat lens.
    David LL; Azuma M; Shearer TR
    Invest Ophthalmol Vis Sci; 1994 Mar; 35(3):785-93. PubMed ID: 8125740
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of water-insoluble proteins in normal and cataractous human lens.
    Kamei A
    Jpn J Ophthalmol; 1990; 34(2):216-24. PubMed ID: 2214364
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Retention of ascorbic acid by the guinea pig eye lens.
    Hughes RE; Hurley RJ; Jones PR
    Exp Eye Res; 1971 Jul; 12(1):39-43. PubMed ID: 5120350
    [No Abstract]   [Full Text] [Related]  

  • 36. Eye lens crystallins: a component of intraocular pseudoexfoliative material.
    Veromann S; Sünter A; Juronen E; Tasa G; Panov A
    Ophthalmic Res; 2004; 36(1):51-4. PubMed ID: 15007240
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preventive effect of ascorbic acid against glucocorticoid-induced cataract formation of developing chick embryos.
    Nishigori H; Hayashi R; Lee JW; Maruyama K; Iwatsuru M
    Exp Eye Res; 1985 Mar; 40(3):445-51. PubMed ID: 4065235
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nuclear cataract and light scattering in cultured lenses from guinea pig and rabbit.
    Fukiage C; Azuma M; Nakamura Y; Tamada Y; Shearer TR
    Curr Eye Res; 1998 Jun; 17(6):623-35. PubMed ID: 9663852
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Topical application of L-arginine blocks advanced glycation by ascorbic acid in the lens of hSVCT2 transgenic mice.
    Fan X; Xiaoqin L; Potts B; Strauch CM; Nemet I; Monnier VM
    Mol Vis; 2011; 17():2221-7. PubMed ID: 21897744
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Alterations in ascorbic acid transport into the lens of streptozotocin-induced diabetic rats and guinea pigs.
    DiMattio J
    Invest Ophthalmol Vis Sci; 1992 Sep; 33(10):2926-35. PubMed ID: 1388145
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.