These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Application of silver nanoparticles and CdSe quantum dots sensitized with of C-like lectin for detection of St. aureus. Comparison of various approaches. Hovhannisyan VA; Bazukyan IL; Gasparyan VK Talanta; 2017 Dec; 175():366-369. PubMed ID: 28842004 [TBL] [Abstract][Full Text] [Related]
4. Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: a novel biological approach. Gopinath V; MubarakAli D; Priyadarshini S; Priyadharsshini NM; Thajuddin N; Velusamy P Colloids Surf B Biointerfaces; 2012 Aug; 96():69-74. PubMed ID: 22521683 [TBL] [Abstract][Full Text] [Related]
5. Label-free NIR-SERS discrimination and detection of foodborne bacteria by in situ synthesis of Ag colloids. Chen L; Mungroo N; Daikuara L; Neethirajan S J Nanobiotechnology; 2015 Jun; 13():45. PubMed ID: 26108554 [TBL] [Abstract][Full Text] [Related]
6. Silver nanorod arrays as a surface-enhanced Raman scattering substrate for foodborne pathogenic bacteria detection. Chu H; Huang Y; Zhao Y Appl Spectrosc; 2008 Aug; 62(8):922-31. PubMed ID: 18702867 [TBL] [Abstract][Full Text] [Related]
7. Can a novel silver nano coating reduce infections and maintain cell viability in vitro? Qureshi AT; Landry JP; Dasa V; Janes M; Hayes DJ J Biomater Appl; 2014 Mar; 28(7):1028-38. PubMed ID: 23775239 [TBL] [Abstract][Full Text] [Related]
8. Bacterial effects and protein corona evaluations: crucial ignored factors in the prediction of bio-efficacy of various forms of silver nanoparticles. Ashkarran AA; Ghavami M; Aghaverdi H; Stroeve P; Mahmoudi M Chem Res Toxicol; 2012 Jun; 25(6):1231-42. PubMed ID: 22551528 [TBL] [Abstract][Full Text] [Related]
9. Inactivation of S. epidermidis, B. subtilis, and E. coli bacteria bioaerosols deposited on a filter utilizing airborne silver nanoparticles. Lee BU; Yun SH; Ji JH; Bae GN J Microbiol Biotechnol; 2008 Jan; 18(1):176-82. PubMed ID: 18239437 [TBL] [Abstract][Full Text] [Related]
10. Non-hazardous anticancerous and antibacterial colloidal 'green' silver nanoparticles. Barua S; Konwarh R; Bhattacharya SS; Das P; Devi KS; Maiti TK; Mandal M; Karak N Colloids Surf B Biointerfaces; 2013 May; 105():37-42. PubMed ID: 23352940 [TBL] [Abstract][Full Text] [Related]
11. Antibacterial activity of poly(vinyl alcohol)-b-poly(acrylonitrile) based micelles loaded with silver nanoparticles. Bryaskova R; Pencheva D; Kyulavska M; Bozukova D; Debuigne A; Detrembleur C J Colloid Interface Sci; 2010 Apr; 344(2):424-8. PubMed ID: 20074742 [TBL] [Abstract][Full Text] [Related]
12. Time-dependent surface plasmon resonance spectroscopy of silver nanoprisms in the presence of halide ions. Hsu MS; Cao YW; Wang HW; Pan YS; Lee BH; Huang CL Chemphyschem; 2010 Jun; 11(8):1742-8. PubMed ID: 20217886 [TBL] [Abstract][Full Text] [Related]
13. Studies on surface plasmon resonance and photoluminescence of silver nanoparticles. Smitha SL; Nissamudeen KM; Philip D; Gopchandran KG Spectrochim Acta A Mol Biomol Spectrosc; 2008 Nov; 71(1):186-90. PubMed ID: 18222106 [TBL] [Abstract][Full Text] [Related]
14. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. Lee KS; El-Sayed MA J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772 [TBL] [Abstract][Full Text] [Related]
15. Antimicrobial activity of highly stable silver nanoparticles embedded in agar-agar matrix as a thin film. Ghosh S; Kaushik R; Nagalakshmi K; Hoti SL; Menezes GA; Harish BN; Vasan HN Carbohydr Res; 2010 Oct; 345(15):2220-7. PubMed ID: 20800222 [TBL] [Abstract][Full Text] [Related]
16. Synthesis of anisotropic silver nanoparticles using novel strain, Bacillus flexus and its biomedical application. Priyadarshini S; Gopinath V; Meera Priyadharsshini N; MubarakAli D; Velusamy P Colloids Surf B Biointerfaces; 2013 Feb; 102():232-7. PubMed ID: 23018021 [TBL] [Abstract][Full Text] [Related]
17. A versatile strategy to fabricate hydrogel-silver nanocomposites and investigation of their antimicrobial activity. Thomas V; Yallapu MM; Sreedhar B; Bajpai SK J Colloid Interface Sci; 2007 Nov; 315(1):389-95. PubMed ID: 17707388 [TBL] [Abstract][Full Text] [Related]
18. Integration of microfiltration and anion-exchange nanoparticles-based magnetic separation with MALDI mass spectrometry for bacterial analysis. Li S; Guo Z; Liu Y; Yang Z; Hui HK Talanta; 2009 Nov; 80(1):313-20. PubMed ID: 19782231 [TBL] [Abstract][Full Text] [Related]
19. Enhanced antibacterial activities of leonuri herba extracts containing silver nanoparticles. Im AR; Han L; Kim ER; Kim J; Kim YS; Park Y Phytother Res; 2012 Aug; 26(8):1249-55. PubMed ID: 22170803 [TBL] [Abstract][Full Text] [Related]
20. Simultaneous capture, detection, and inactivation of bacteria as enabled by a surface-enhanced Raman scattering multifunctional chip. Wang H; Zhou Y; Jiang X; Sun B; Zhu Y; Wang H; Su Y; He Y Angew Chem Int Ed Engl; 2015 Apr; 54(17):5132-6. PubMed ID: 25820791 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]