These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 2342782)

  • 21. Junctions between lens fiber cells are labeled with a monoclonal antibody shown to be specific for MP26.
    Sas DF; Sas MJ; Johnson KR; Menko AS; Johnson RG
    J Cell Biol; 1985 Jan; 100(1):216-25. PubMed ID: 3880752
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The developmental expression of three mammalian lens fiber cell membrane proteins.
    Jarvis LJ; Kumar NM; Louis CF
    Invest Ophthalmol Vis Sci; 1993 Mar; 34(3):613-20. PubMed ID: 7680640
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Covalent change of major intrinsic polypeptide (MIP26K) of lens membrane during human senile cataractogenesis.
    Takemoto L; Takehana M
    Biochem Biophys Res Commun; 1986 Mar; 135(3):965-71. PubMed ID: 2421726
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural changes in lenses of mice lacking the gap junction protein connexin43.
    Gao Y; Spray DC
    Invest Ophthalmol Vis Sci; 1998 Jun; 39(7):1198-209. PubMed ID: 9620080
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Glycation of lens membrane intrinsic proteins.
    Swamy MS; Abraham EC
    Curr Eye Res; 1992 Sep; 11(9):833-42. PubMed ID: 1424726
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protein changes during aging and the effects of long-term cortisol treatment in macaque monkey lens.
    Matsushima H; Peskind ER; Clark JM; Leverenz JB; Wilkinson CW; Clark JI
    Optom Vis Sci; 1997 Apr; 74(4):190-7. PubMed ID: 9200162
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lipid differentiation in MP26 junction enriched membranes of bovine lens fiber cells.
    Baumann CG; Malewicz B; Anderson WH; Lampe PD; Johnson RG; Baumann WJ
    Biochim Biophys Acta; 1996 Sep; 1303(2):145-53. PubMed ID: 8856044
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Emory mouse cataract: changes in the beta and gamma-crystallins during aging and cataractogenesis as revealed by isoelectric focusing of the native soluble proteins.
    Barron BC; Kuck JF; Kuck KD
    Curr Eye Res; 1984 Dec; 3(12):1365-72. PubMed ID: 6525877
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Crystallins in water soluble-high molecular weight protein fractions and water insoluble protein fractions in aging and cataractous human lenses.
    Harrington V; McCall S; Huynh S; Srivastava K; Srivastava OP
    Mol Vis; 2004 Jul; 10():476-89. PubMed ID: 15303090
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Major intrinsic polypeptide (MIP26K) of the lens membrane: covalent change in an internal sequence during human senile cataractogenesis.
    Takemoto L; Smith J; Kodama T
    Biochem Biophys Res Commun; 1987 Feb; 142(3):761-6. PubMed ID: 3827901
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of lens epithelial cell differentiation by quantitation of MP26 mRNA relative to gamma-crystallin mRNA in initiation of galactose cataracts in the rat.
    Wen Y; Unakar NJ; Bekhor I
    Exp Eye Res; 1991 Mar; 52(3):321-7. PubMed ID: 2015861
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A covalent change in alpha crystallin during opacification of the Emory mouse lens.
    Takemoto L; Horwitz J; Kuck J; Kuck K
    Lens Eye Toxic Res; 1989; 6(3):431-41. PubMed ID: 2486937
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lipid composition of lens plasma membrane fractions enriched in fiber junctions.
    Fleschner CR; Cenedella RJ
    J Lipid Res; 1991 Jan; 32(1):45-53. PubMed ID: 2010693
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Membrane alterations during cataract development in the Nakano mouse lens.
    Tanaka M; Russell P; Smith S; Uga S; Kuwabara T; Kinoshita JH
    Invest Ophthalmol Vis Sci; 1980 Jun; 19(6):619-29. PubMed ID: 7380622
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-performance liquid chromatography of the main polypeptide (MP26) of lens fiber plasma membranes solubilized with n-octyl beta-D-glucopyranoside.
    Manenti S; Dunia I; le Maire M; Benedetti EL
    FEBS Lett; 1988 Jun; 233(1):148-52. PubMed ID: 3164277
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Raman study of disulfide and sulfhydryl in the Emory mouse cataract.
    DeNagel DC; Bando M; Yu NT; Kuck JF
    Invest Ophthalmol Vis Sci; 1988 May; 29(5):823-6. PubMed ID: 3366572
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Glycation mediated crosslinking between alpha-crystallin and MP26 in intact lens membranes.
    Prabhakaram M; Katz ML; Ortwerth BJ
    Mech Ageing Dev; 1996 Oct; 91(1):65-78. PubMed ID: 8910261
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Glycation of MP26 and MP22 in bovine lens membranes.
    Prabhakaram M; Ortwerth BJ
    Biochem Biophys Res Commun; 1992 Jun; 185(2):496-504. PubMed ID: 1610346
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Messenger RNA population in normal and cataractous rat lens. A minireview.
    Bekhor I
    Lens Eye Toxic Res; 1989; 6(4):749-72. PubMed ID: 2487280
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dilemmas of the structural and biochemical organization of lens membranes during differentiation and aging.
    Dunia I; Lien DN; Manenti S; Benedetti EL
    Curr Eye Res; 1985 Nov; 4(11):1219-34. PubMed ID: 3907986
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.