These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 23427828)
1. Bone regeneration in sheep using acropora coral, a natural resorbable scaffold, and autologous mesenchymal stem cells. Manassero M; Viateau V; Deschepper M; Oudina K; Logeart-Avramoglou D; Petite H; Bensidhoum M Tissue Eng Part A; 2013 Jul; 19(13-14):1554-63. PubMed ID: 23427828 [TBL] [Abstract][Full Text] [Related]
2. Low-dose BMP-2 and MSC dual delivery onto coral scaffold for critical-size bone defect regeneration in sheep. Decambron A; Fournet A; Bensidhoum M; Manassero M; Sailhan F; Petite H; Logeart-Avramoglou D; Viateau V J Orthop Res; 2017 Dec; 35(12):2637-2645. PubMed ID: 28401593 [TBL] [Abstract][Full Text] [Related]
3. Comparative study of the osteogenic ability of four different ceramic constructs in an ectopic large animal model. Viateau V; Manassero M; Sensébé L; Langonné A; Marchat D; Logeart-Avramoglou D; Petite H; Bensidhoum M J Tissue Eng Regen Med; 2016 Mar; 10(3):E177-87. PubMed ID: 23784976 [TBL] [Abstract][Full Text] [Related]
4. Bone regeneration in a canine cranial model using allogeneic adipose derived stem cells and coral scaffold. Liu G; Zhang Y; Liu B; Sun J; Li W; Cui L Biomaterials; 2013 Apr; 34(11):2655-64. PubMed ID: 23343633 [TBL] [Abstract][Full Text] [Related]
5. Engineering tubular bone using mesenchymal stem cell sheets and coral particles. Geng W; Ma D; Yan X; Liu L; Cui J; Xie X; Li H; Chen F Biochem Biophys Res Commun; 2013 Apr; 433(4):595-601. PubMed ID: 23523796 [TBL] [Abstract][Full Text] [Related]
6. Integration of a calcined bovine bone and BMSC-sheet 3D scaffold and the promotion of bone regeneration in large defects. Liu Y; Ming L; Luo H; Liu W; Zhang Y; Liu H; Jin Y Biomaterials; 2013 Dec; 34(38):9998-10006. PubMed ID: 24079891 [TBL] [Abstract][Full Text] [Related]
7. De novo reconstruction of functional bone by tissue engineering in the metatarsal sheep model. Bensaïd W; Oudina K; Viateau V; Potier E; Bousson V; Blanchat C; Sedel L; Guillemin G; Petite H Tissue Eng; 2005; 11(5-6):814-24. PubMed ID: 15998221 [TBL] [Abstract][Full Text] [Related]
8. Guided bone regeneration in pig calvarial bone defects using autologous mesenchymal stem/progenitor cells - a comparison of different tissue sources. Stockmann P; Park J; von Wilmowsky C; Nkenke E; Felszeghy E; Dehner JF; Schmitt C; Tudor C; Schlegel KA J Craniomaxillofac Surg; 2012 Jun; 40(4):310-20. PubMed ID: 21723141 [TBL] [Abstract][Full Text] [Related]
9. Combined mesenchymal stem cell sheets and rhBMP-2-releasing calcium sulfate-rhBMP-2 scaffolds for segmental bone tissue engineering. Qi Y; Wang Y; Yan W; Li H; Shi Z; Pan Z Cell Transplant; 2012; 21(4):693-705. PubMed ID: 22236577 [TBL] [Abstract][Full Text] [Related]
10. Long-bone critical-size defects treated with tissue-engineered grafts: a study on sheep. Viateau V; Guillemin G; Bousson V; Oudina K; Hannouche D; Sedel L; Logeart-Avramoglou D; Petite H J Orthop Res; 2007 Jun; 25(6):741-9. PubMed ID: 17318898 [TBL] [Abstract][Full Text] [Related]
11. Coculture of peripheral blood CD34+ cell and mesenchymal stem cell sheets increase the formation of bone in calvarial critical-size defects in rabbits. Li G; Wang X; Cao J; Ju Z; Ma D; Liu Y; Zhang J Br J Oral Maxillofac Surg; 2014 Feb; 52(2):134-9. PubMed ID: 24210781 [TBL] [Abstract][Full Text] [Related]
12. [Tissue-engineering bone with ADSCs and coral scaffold for repairing of cranial bone defect in canine]. Liu B; Cui L; Liu GP; Cao YL; Zhu JT; Cao Y Zhonghua Zheng Xing Wai Ke Za Zhi; 2009 May; 25(3):204-8. PubMed ID: 19803204 [TBL] [Abstract][Full Text] [Related]
13. Reconstruction of segmental bone defects in the rabbit ulna using periosteum encapsulated mesenchymal stem cells-loaded poly (lactic-co-glycolic acid) scaffolds. Zhang X; Qi YY; Zhao TF; Li D; Dai XS; Niu L; He RX Chin Med J (Engl); 2012 Nov; 125(22):4031-6. PubMed ID: 23158138 [TBL] [Abstract][Full Text] [Related]
15. Comparison of Survival and Osteogenic Ability of Human Mesenchymal Stem Cells in Orthotopic and Ectopic Sites in Mice. Manassero M; Paquet J; Deschepper M; Viateau V; Retortillo J; Bensidhoum M; Logeart-Avramoglou D; Petite H Tissue Eng Part A; 2016 Mar; 22(5-6):534-44. PubMed ID: 26896389 [TBL] [Abstract][Full Text] [Related]
16. Ectopic bone regeneration by human bone marrow mononucleated cells, undifferentiated and osteogenically differentiated bone marrow mesenchymal stem cells in beta-tricalcium phosphate scaffolds. Ye X; Yin X; Yang D; Tan J; Liu G Tissue Eng Part C Methods; 2012 Jul; 18(7):545-56. PubMed ID: 22250840 [TBL] [Abstract][Full Text] [Related]
17. Mesenchymal stromal cells improve the osteogenic capabilities of mineralized agarose gels in a rat full-thickness cranial defect model. Mizuta N; Hattori K; Suzawa Y; Iwai S; Matsumoto T; Tadokoro M; Nakano T; Akashi M; Ohgushi H; Yura Y J Tissue Eng Regen Med; 2013 Jan; 7(1):51-60. PubMed ID: 22318970 [TBL] [Abstract][Full Text] [Related]
18. Effects of hydroxyapatite-containing composite nanofibers on osteogenesis of mesenchymal stem cells in vitro and bone regeneration in vivo. Lü LX; Zhang XF; Wang YY; Ortiz L; Mao X; Jiang ZL; Xiao ZD; Huang NP ACS Appl Mater Interfaces; 2013 Jan; 5(2):319-30. PubMed ID: 23267692 [TBL] [Abstract][Full Text] [Related]
19. Effect of hydrostatic pressure on bone regeneration using human mesenchymal stem cells. Huang C; Ogawa R Tissue Eng Part A; 2012 Oct; 18(19-20):2106-13. PubMed ID: 22607391 [TBL] [Abstract][Full Text] [Related]
20. Contrasting effects of vasculogenic induction upon biaxial bioreactor stimulation of mesenchymal stem cells and endothelial progenitor cells cocultures in three-dimensional scaffolds under in vitro and in vivo paradigms for vascularized bone tissue engineering. Liu Y; Teoh SH; Chong MS; Yeow CH; Kamm RD; Choolani M; Chan JK Tissue Eng Part A; 2013 Apr; 19(7-8):893-904. PubMed ID: 23102089 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]