These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 2342783)

  • 1. 1H magnetic resonance imaging study of bovine ocular tissue.
    Williams TR; Perry BC; Koenig JL
    Ophthalmic Res; 1990; 22(2):89-94. PubMed ID: 2342783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and regional water content of bovine, porcine, and human lenses examined with proton nuclear magnetic resonance imaging.
    Shaw EM; Williams TR; Koenig JL
    Ophthalmic Res; 1995; 27(5):268-76. PubMed ID: 8552367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase transitions in ocular tissue - NMR and temperature measurements.
    Seiler T; Müller-Stolzenburg N; Wollensak J
    Graefes Arch Clin Exp Ophthalmol; 1983; 221(3):122-5. PubMed ID: 6667860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Freezing-thawing hysteresis. II. Investigation of human ocular tissues.
    Pócsik I; Furó I; Rácz P
    Ophthalmic Res; 1986; 18(5):275-8. PubMed ID: 3808592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic Segmentation of the Eye in 3D Magnetic Resonance Imaging: A Novel Statistical Shape Model for Treatment Planning of Retinoblastoma.
    Ciller C; De Zanet SI; Rüegsegger MB; Pica A; Sznitman R; Thiran JP; Maeder P; Munier FL; Kowal JH; Cuadra MB
    Int J Radiat Oncol Biol Phys; 2015 Jul; 92(4):794-802. PubMed ID: 26104933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proton and sodium 23 magnetic resonance imaging of human ocular tissues. A model study.
    Kolodny NH; Gragoudas ES; D'Amico DJ; Kohler SJ; Seddon JM; Murphy EJ; Yun C; Albert DM
    Arch Ophthalmol; 1987 Nov; 105(11):1532-6. PubMed ID: 2823760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sodium-23 magnetic resonance imaging of the eye and lens.
    Garner WH; Hilal SK; Lee SW; Spector A
    Proc Natl Acad Sci U S A; 1986 Mar; 83(6):1901-5. PubMed ID: 3006076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface coil phosphorus-31 nuclear magnetic resonance studies of the intact eye.
    Schleich T; Matson GB; Willis JA; Acosta G; Serdahl C; Campbell P; Garwood M
    Exp Eye Res; 1985 Mar; 40(3):343-55. PubMed ID: 4065231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo determination of the anisotropic diffusion of water and the T1 and T2 times in the rabbit lens by high-resolution magnetic resonance imaging.
    Wu JC; Wong EC; Arrindell EL; Simons KB; Jesmanowicz A; Hyde JS
    Invest Ophthalmol Vis Sci; 1993 Jun; 34(7):2151-8. PubMed ID: 8505198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3-Dimensional modelling of chick embryo eye development and growth using high resolution magnetic resonance imaging.
    Goodall N; Kisiswa L; Prashar A; Faulkner S; Tokarczuk P; Singh K; Erichsen JT; Guggenheim J; Halfter W; Wride MA
    Exp Eye Res; 2009 Oct; 89(4):511-21. PubMed ID: 19540232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic resonance imaging of the rabbit eye. Improved anatomical detail using magnetization transfer contrast.
    Ceckler TL; Karino K; Kador PF; Balaban RS
    Invest Ophthalmol Vis Sci; 1991 Nov; 32(12):3109-13. PubMed ID: 1938286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. T2, Carr-Purcell T2 and T1rho of fat and water as surrogate markers of trabecular bone structure.
    Lammentausta E; Silvast TS; Närväinen J; Jurvelin JS; Nieminen MT; Gröhn OH
    Phys Med Biol; 2008 Feb; 53(3):543-55. PubMed ID: 18199901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nuclear magnetic resonance microscopic ocular imaging for the detection of early-stage cataract.
    Ahn CB; Anderson JA; Juh SC; Kim I; Garner WH; Cho ZH
    Invest Ophthalmol Vis Sci; 1989 Jul; 30(7):1612-7. PubMed ID: 2745002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of dexamethasone in the cornea and lens by NMR spectroscopy.
    Midelfart A; Dybdahl A; Krane J
    Graefes Arch Clin Exp Ophthalmol; 1999 May; 237(5):415-23. PubMed ID: 10333109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The axial misalignment between ocular lens and cornea observed by MRI (I)--at fixed accommodative state.
    Chang Y; Wu HM; Lin YF
    Vision Res; 2007 Jan; 47(1):71-84. PubMed ID: 17084432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acidic lens-protein degrading activity: I. Distribution in bovine ocular tissues.
    Fukuyo T; Hayasaka S; Hara S; Nakazawa M; Mizuno K
    Jpn J Ophthalmol; 1984; 28(2):136-9. PubMed ID: 6471604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proton magnetic resonance imaging of the ocular lens.
    Cheng HM; Yeh LI; Barnett P; Miglior S; Eagon JC; González G; Brady TJ
    Exp Eye Res; 1987 Dec; 45(6):875-82. PubMed ID: 3428403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of magnetic field strength and receiver coil in ocular MRI: a phantom and patient study.
    Erb-Eigner K; Warmuth C; Taupitz M; Willerding G; Bertelmann E; Asbach P
    Rofo; 2013 Sep; 185(9):830-7. PubMed ID: 23888471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A feasibility study of 23Na magnetic resonance imaging of human and rabbit vitreal disorders.
    Kolodny NH; Kohler SJ; Rettig ES; Botti PA; D'Amico DJ; Gragoudas ES
    Invest Ophthalmol Vis Sci; 1993 May; 34(6):1917-22. PubMed ID: 8491544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [NMR study of the state of water in the human lens during cataract development].
    Babizhaev MA; Deev AI; Nikolaev GM
    Biofizika; 1985; 30(4):671-4. PubMed ID: 4052470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.