BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 23427914)

  • 1. In silico categorization of in vivo intrinsic clearance using machine learning.
    Hsiao YW; Fagerholm U; Norinder U
    Mol Pharm; 2013 Apr; 10(4):1318-21. PubMed ID: 23427914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting human liver microsomal stability with machine learning techniques.
    Sakiyama Y; Yuki H; Moriya T; Hattori K; Suzuki M; Shimada K; Honma T
    J Mol Graph Model; 2008 Feb; 26(6):907-15. PubMed ID: 17683964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement of multivariate image analysis applied to quantitative structure-activity relationship (QSAR) analysis by using wavelet-principal component analysis ranking variable selection and least-squares support vector machine regression: QSAR study of checkpoint kinase WEE1 inhibitors.
    Cormanich RA; Goodarzi M; Freitas MP
    Chem Biol Drug Des; 2009 Feb; 73(2):244-52. PubMed ID: 19207427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comprehensive support vector machine binary hERG classification model based on extensive but biased end point hERG data sets.
    Shen MY; Su BH; Esposito EX; Hopfinger AJ; Tseng YJ
    Chem Res Toxicol; 2011 Jun; 24(6):934-49. PubMed ID: 21504223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring QSTR analysis of the toxicity of phenols and thiophenols using machine learning methods.
    Asadollahi-Baboli M
    Environ Toxicol Pharmacol; 2012 Nov; 34(3):826-31. PubMed ID: 23068157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gaussian processes for classification: QSAR modeling of ADMET and target activity.
    Obrezanova O; Segall MD
    J Chem Inf Model; 2010 Jun; 50(6):1053-61. PubMed ID: 20433177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In silico prediction of toxicity of non-congeneric industrial chemicals using ensemble learning based modeling approaches.
    Singh KP; Gupta S
    Toxicol Appl Pharmacol; 2014 Mar; 275(3):198-212. PubMed ID: 24463095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative structure-activity relationship models of clinical pharmacokinetics: clearance and volume of distribution.
    Gombar VK; Hall SD
    J Chem Inf Model; 2013 Apr; 53(4):948-57. PubMed ID: 23451981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative multiple quantitative structure-retention relationships modeling of gas chromatographic retention time of essential oils using multiple linear regression, principal component regression, and partial least squares techniques.
    Qin LT; Liu SS; Liu HL; Tong J
    J Chromatogr A; 2009 Jul; 1216(27):5302-12. PubMed ID: 19486989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring QSAR for substituted 2-sulfonyl-phenyl-indol derivatives as potent and selective COX-2 inhibitors using different chemometrics tools.
    Khoshneviszadeh M; Edraki N; Miri R; Hemmateenejad B
    Chem Biol Drug Des; 2008 Dec; 72(6):564-74. PubMed ID: 19090923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A rapid computational filter for predicting the rate of human renal clearance.
    Paine SW; Barton P; Bird J; Denton R; Menochet K; Smith A; Tomkinson NP; Chohan KK
    J Mol Graph Model; 2010 Dec; 29(4):529-37. PubMed ID: 21075652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predictive QSAR modeling of phosphodiesterase 4 inhibitors.
    Kovalishyn V; Tanchuk V; Charochkina L; Semenuta I; Prokopenko V
    J Mol Graph Model; 2012 Feb; 32():32-8. PubMed ID: 22023934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Random forest prediction of mutagenicity from empirical physicochemical descriptors.
    Zhang QY; Aires-de-Sousa J
    J Chem Inf Model; 2007; 47(1):1-8. PubMed ID: 17238242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applying machine learning techniques for ADME-Tox prediction: a review.
    Maltarollo VG; Gertrudes JC; Oliveira PR; Honorio KM
    Expert Opin Drug Metab Toxicol; 2015 Feb; 11(2):259-71. PubMed ID: 25440524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new topological descriptors based model for predicting intestinal epithelial transport of drugs in Caco-2 cell culture.
    Marrero Ponce Y; Cabrera Pérez MA; Romero Zaldivar V; González Díaz H; Torrens F
    J Pharm Pharm Sci; 2004 Jun; 7(2):186-99. PubMed ID: 15367375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of toxicity of nitrobenzenes using ab initio and least squares support vector machines.
    Niazi A; Jameh-Bozorghi S; Nori-Shargh D
    J Hazard Mater; 2008 Mar; 151(2-3):603-9. PubMed ID: 17630186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In silico modeling to predict drug-induced phospholipidosis.
    Choi SS; Kim JS; Valerio LG; Sadrieh N
    Toxicol Appl Pharmacol; 2013 Jun; 269(2):195-204. PubMed ID: 23541745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The impact of variable selection on the modelling of oestrogenicity.
    Ghafourian T; Cronin MT
    SAR QSAR Environ Res; 2005; 16(1-2):171-90. PubMed ID: 15844449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting liquid chromatographic retention times of peptides from the Drosophila melanogaster proteome by machine learning approaches.
    Tian F; Yang L; Lv F; Zhou P
    Anal Chim Acta; 2009 Jun; 644(1-2):10-6. PubMed ID: 19463555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clearance mechanism assignment and total clearance prediction in human based upon in silico models.
    Lombardo F; Obach RS; Varma MV; Stringer R; Berellini G
    J Med Chem; 2014 May; 57(10):4397-405. PubMed ID: 24773013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.