BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 23428023)

  • 1. Monoclonal antibody heterogeneity analysis and deamidation monitoring with high-performance cation-exchange chromatofocusing using simple, two component buffer systems.
    Kang X; Kutzko JP; Hayes ML; Frey DD
    J Chromatogr A; 2013 Mar; 1283():89-97. PubMed ID: 23428023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of a pH gradient-based ion-exchange chromatography method for high-resolution monoclonal antibody charge variant separations.
    Rea JC; Moreno GT; Lou Y; Farnan D
    J Pharm Biomed Anal; 2011 Jan; 54(2):317-23. PubMed ID: 20884149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving pH gradient cation-exchange chromatography of monoclonal antibodies by controlling ionic strength.
    Zhang L; Patapoff T; Farnan D; Zhang B
    J Chromatogr A; 2013 Jan; 1272():56-64. PubMed ID: 23253120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Charge heterogeneity profiling of monoclonal antibodies using low ionic strength ion-exchange chromatography and well-controlled pH gradients on monolithic columns.
    Talebi M; Nordborg A; Gaspar A; Lacher NA; Wang Q; He XZ; Haddad PR; Hilder EF
    J Chromatogr A; 2013 Nov; 1317():148-54. PubMed ID: 24011724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly linear pH gradients for analyzing monoclonal antibody charge heterogeneity in the alkaline range.
    Lingg N; Tan E; Hintersteiner B; Bardor M; Jungbauer A
    J Chromatogr A; 2013 Dec; 1319():65-71. PubMed ID: 24183595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromatofocusing of peptides and proteins using linear pH gradients formed on strong ion-exchange adsorbents.
    Kang X; Frey DD
    Biotechnol Bioeng; 2004 Aug; 87(3):376-87. PubMed ID: 15281112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-performance cation-exchange chromatofocusing of proteins.
    Kang X; Frey DD
    J Chromatogr A; 2003 Mar; 991(1):117-28. PubMed ID: 12703906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simple, two-component buffer enhances use of chromatofocusing for processing of therapeutic proteins.
    Logan KA; Lagerlund I; Chamow SM
    Biotechnol Bioeng; 1999 Jan; 62(2):208-15. PubMed ID: 10099531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Separation of protein mixtures using pH-gradient cation-exchange chromatography.
    Ng PK; He J; Snyder MA
    J Chromatogr A; 2009 Feb; 1216(9):1372-6. PubMed ID: 19168182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Semiautomated pH gradient ion-exchange chromatography of monoclonal antibody charge variants.
    Talebi M; Shellie RA; Hilder EF; Lacher NA; Haddad PR
    Anal Chem; 2014 Oct; 86(19):9794-9. PubMed ID: 25199803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Separation of protein charge variants with induced pH gradients using anion exchange chromatographic columns.
    Pabst TM; Carta G; Ramasubramanyan N; Hunter AK; Mensah P; Gustafson ME
    Biotechnol Prog; 2008; 24(5):1096-106. PubMed ID: 19194919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiproduct high-resolution monoclonal antibody charge variant separations by pH gradient ion-exchange chromatography.
    Farnan D; Moreno GT
    Anal Chem; 2009 Nov; 81(21):8846-57. PubMed ID: 19795895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of the column on effluent pH in cation exchange pH gradient chromatography, a practical study.
    Farsang E; Horváth K; Beck A; Wang Q; Lauber M; Guillarme D; Fekete S
    J Chromatogr A; 2020 Aug; 1626():461350. PubMed ID: 32797830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hyphenation of strong cation exchange chromatography to native mass spectrometry for high throughput online characterization of charge heterogeneity of therapeutic monoclonal antibodies.
    Ma F; Raoufi F; Bailly MA; Fayadat-Dilman L; Tomazela D
    MAbs; 2020; 12(1):1763762. PubMed ID: 32370592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification of recombinant green fluorescent protein using chromatofocusing with a pH gradient composed of multiple stepwise fronts.
    Narahari CR; Randers-Eichhorn L; Strong JC; Ramasubramanyan N; Rao G; Frey DD
    Biotechnol Prog; 2001; 17(1):150-60. PubMed ID: 11170493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charge variant native mass spectrometry benefits mass precision and dynamic range of monoclonal antibody intact mass analysis.
    Bailey AO; Han G; Phung W; Gazis P; Sutton J; Josephs JL; Sandoval W
    MAbs; 2018; 10(8):1214-1225. PubMed ID: 30339478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic generation of buffer systems for pH gradient ion exchange chromatography and their application.
    Kröner F; Hubbuch J
    J Chromatogr A; 2013 Apr; 1285():78-87. PubMed ID: 23489486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromatofocusing.
    Li CM; William Hutchens T
    Methods Mol Biol; 1992; 11():237-48. PubMed ID: 21431670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Avoiding antibody aggregation during processing: establishing hold times.
    Joshi V; Shivach T; Kumar V; Yadav N; Rathore A
    Biotechnol J; 2014 Sep; 9(9):1195-205. PubMed ID: 24753430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of buffer concentration on gradient chromatofocusing performance separating protiens on a high-performance DEAE column.
    Shan L; Anderson DJ
    J Chromatogr A; 2001 Feb; 909(2):191-205. PubMed ID: 11269519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.