BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 23428178)

  • 1. Arsenic bioaccessibility in gold mine tailings of Delita, Cuba.
    Toujaguez R; Ono FB; Martins V; Cabrera PP; Blanco AV; Bundschuh J; Guilherme LR
    J Hazard Mater; 2013 Nov; 262():1004-13. PubMed ID: 23428178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arsenic release from arsenopyrite weathering: insights from sequential extraction and microscopic studies.
    Basu A; Schreiber ME
    J Hazard Mater; 2013 Nov; 262():896-904. PubMed ID: 23312782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of soil composition and mineralogy on the bioaccessibility of arsenic from tailings and soil in gold mine districts of Nova Scotia.
    Meunier L; Walker SR; Wragg J; Parsons MB; Koch I; Jamieson HE; Reimer KJ
    Environ Sci Technol; 2010 Apr; 44(7):2667-74. PubMed ID: 20218545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Speciation and characterization of arsenic in Ketza River mine tailings using X-ray absorption spectroscopy.
    Paktunc D; Foster A; Laflamme G
    Environ Sci Technol; 2003 May; 37(10):2067-74. PubMed ID: 12785509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Geochemical and mineralogical characterization of a neutral, low-sulfide/high-carbonate tailings impoundment, Markušovce, eastern Slovakia.
    Hiller E; Petrák M; Tóth R; Lalinská-Voleková B; Jurkovič L; Kučerová G; Radková A; Sottník P; Vozár J
    Environ Sci Pollut Res Int; 2013 Nov; 20(11):7627-42. PubMed ID: 23436124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arsenic species formed from arsenopyrite weathering along a contamination gradient in Circumneutral river floodplain soils.
    Mandaliev PN; Mikutta C; Barmettler K; Kotsev T; Kretzschmar R
    Environ Sci Technol; 2014; 48(1):208-17. PubMed ID: 24283255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mobilisation and bioavailability of arsenic around mesothermal gold deposits in a semiarid environment, Otago, New Zealand.
    Craw D; Pacheco L
    ScientificWorldJournal; 2002 Feb; 2():308-19. PubMed ID: 12806018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mineralogical and geochemical characterization of arsenic in an abandoned mine tailings of Korea.
    Ahn JS; Park YS; Kim JY; Kim KW
    Environ Geochem Health; 2005 Apr; 27(2):147-57. PubMed ID: 16003582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution of inorganic arsenic species in mine tailings of abandoned mines from Korea.
    Kim MJ; Ahn KH; Jung Y
    Chemosphere; 2002 Oct; 49(3):307-12. PubMed ID: 12363309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetite recovery from copper tailings increases arsenic distribution in solution phase and uptake in native grass.
    Liu Y; Huang L
    J Environ Manage; 2017 Jan; 186(Pt 2):175-182. PubMed ID: 27210238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of arsenic species in tailings and windblown dust from a gold mining area.
    Ono FB; Tappero R; Sparks D; Guilherme LR
    Environ Sci Pollut Res Int; 2016 Jan; 23(1):638-47. PubMed ID: 26330325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenic speciation and bioaccessibility in arsenic-contaminated soils: sequential extraction and mineralogical investigation.
    Kim EJ; Yoo JC; Baek K
    Environ Pollut; 2014 Mar; 186():29-35. PubMed ID: 24361561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of particle size on arsenic bioaccessibility in gold mine tailings of Nova Scotia.
    Meunier L; Koch I; Reimer KJ
    Sci Total Environ; 2011 May; 409(11):2233-43. PubMed ID: 21435694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of arsenopyrite weathering products in mine wastes from abandoned tungsten and tin exploitations.
    Murciego A; Alvarez-Ayuso E; Pellitero E; Rodríguez MA; García-Sánchez A; Tamayo A; Rubio J; Rubio F; Rubin J
    J Hazard Mater; 2011 Feb; 186(1):590-601. PubMed ID: 21130565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Treatment of mining acidic leachates with indigenous limestone, Zimapan Mexico.
    Labastida I; Armienta MA; Lara-Castro RH; Aguayo A; Cruz O; Ceniceros N
    J Hazard Mater; 2013 Nov; 262():1187-95. PubMed ID: 22819958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ferric minerals and organic matter change arsenic speciation in copper mine tailings.
    Wang P; Liu Y; Menzies NW; Wehr JB; de Jonge MD; Howard DL; Kopittke PM; Huang L
    Environ Pollut; 2016 Nov; 218():835-843. PubMed ID: 27524252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogeochemistry of arsenic pollution in watersheds influenced by gold mining activities in Paracatu (Minas Gerais State, Brazil).
    Bidone E; Castilhos Z; Cesar R; Santos MC; Sierpe R; Ferreira M
    Environ Sci Pollut Res Int; 2016 May; 23(9):8546-55. PubMed ID: 26797944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioaccessibility of arsenic in mine waste-contaminated soils: a case study from an abandoned arsenic mine in SW England (UK).
    Palumbo-Roe B; Klinck B
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Jul; 42(9):1251-61. PubMed ID: 17654145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arsenic mineralogy and mobility in the arsenic-rich historical mine waste dump.
    Filippi M; Drahota P; Machovič V; Böhmová V; Mihaljevič M
    Sci Total Environ; 2015 Dec; 536():713-728. PubMed ID: 26254072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of cassiterite controlling arsenic mobility in an abandoned stanniferous tailings impoundment at Llallagua, Bolivia.
    Romero FM; Canet C; Alfonso P; Zambrana RN; Soto N
    Sci Total Environ; 2014 May; 481():100-7. PubMed ID: 24589759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.