These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 23428178)
1. Arsenic bioaccessibility in gold mine tailings of Delita, Cuba. Toujaguez R; Ono FB; Martins V; Cabrera PP; Blanco AV; Bundschuh J; Guilherme LR J Hazard Mater; 2013 Nov; 262():1004-13. PubMed ID: 23428178 [TBL] [Abstract][Full Text] [Related]
2. Arsenic release from arsenopyrite weathering: insights from sequential extraction and microscopic studies. Basu A; Schreiber ME J Hazard Mater; 2013 Nov; 262():896-904. PubMed ID: 23312782 [TBL] [Abstract][Full Text] [Related]
3. Effects of soil composition and mineralogy on the bioaccessibility of arsenic from tailings and soil in gold mine districts of Nova Scotia. Meunier L; Walker SR; Wragg J; Parsons MB; Koch I; Jamieson HE; Reimer KJ Environ Sci Technol; 2010 Apr; 44(7):2667-74. PubMed ID: 20218545 [TBL] [Abstract][Full Text] [Related]
4. Speciation and characterization of arsenic in Ketza River mine tailings using X-ray absorption spectroscopy. Paktunc D; Foster A; Laflamme G Environ Sci Technol; 2003 May; 37(10):2067-74. PubMed ID: 12785509 [TBL] [Abstract][Full Text] [Related]
5. Geochemical and mineralogical characterization of a neutral, low-sulfide/high-carbonate tailings impoundment, Markušovce, eastern Slovakia. Hiller E; Petrák M; Tóth R; Lalinská-Voleková B; Jurkovič L; Kučerová G; Radková A; Sottník P; Vozár J Environ Sci Pollut Res Int; 2013 Nov; 20(11):7627-42. PubMed ID: 23436124 [TBL] [Abstract][Full Text] [Related]
6. Arsenic species formed from arsenopyrite weathering along a contamination gradient in Circumneutral river floodplain soils. Mandaliev PN; Mikutta C; Barmettler K; Kotsev T; Kretzschmar R Environ Sci Technol; 2014; 48(1):208-17. PubMed ID: 24283255 [TBL] [Abstract][Full Text] [Related]
7. Mobilisation and bioavailability of arsenic around mesothermal gold deposits in a semiarid environment, Otago, New Zealand. Craw D; Pacheco L ScientificWorldJournal; 2002 Feb; 2():308-19. PubMed ID: 12806018 [TBL] [Abstract][Full Text] [Related]
8. Mineralogical and geochemical characterization of arsenic in an abandoned mine tailings of Korea. Ahn JS; Park YS; Kim JY; Kim KW Environ Geochem Health; 2005 Apr; 27(2):147-57. PubMed ID: 16003582 [TBL] [Abstract][Full Text] [Related]
9. Distribution of inorganic arsenic species in mine tailings of abandoned mines from Korea. Kim MJ; Ahn KH; Jung Y Chemosphere; 2002 Oct; 49(3):307-12. PubMed ID: 12363309 [TBL] [Abstract][Full Text] [Related]
10. Magnetite recovery from copper tailings increases arsenic distribution in solution phase and uptake in native grass. Liu Y; Huang L J Environ Manage; 2017 Jan; 186(Pt 2):175-182. PubMed ID: 27210238 [TBL] [Abstract][Full Text] [Related]
11. Investigation of arsenic species in tailings and windblown dust from a gold mining area. Ono FB; Tappero R; Sparks D; Guilherme LR Environ Sci Pollut Res Int; 2016 Jan; 23(1):638-47. PubMed ID: 26330325 [TBL] [Abstract][Full Text] [Related]
12. Arsenic speciation and bioaccessibility in arsenic-contaminated soils: sequential extraction and mineralogical investigation. Kim EJ; Yoo JC; Baek K Environ Pollut; 2014 Mar; 186():29-35. PubMed ID: 24361561 [TBL] [Abstract][Full Text] [Related]
13. Effect of particle size on arsenic bioaccessibility in gold mine tailings of Nova Scotia. Meunier L; Koch I; Reimer KJ Sci Total Environ; 2011 May; 409(11):2233-43. PubMed ID: 21435694 [TBL] [Abstract][Full Text] [Related]
14. Study of arsenopyrite weathering products in mine wastes from abandoned tungsten and tin exploitations. Murciego A; Alvarez-Ayuso E; Pellitero E; Rodríguez MA; García-Sánchez A; Tamayo A; Rubio J; Rubio F; Rubin J J Hazard Mater; 2011 Feb; 186(1):590-601. PubMed ID: 21130565 [TBL] [Abstract][Full Text] [Related]
16. Ferric minerals and organic matter change arsenic speciation in copper mine tailings. Wang P; Liu Y; Menzies NW; Wehr JB; de Jonge MD; Howard DL; Kopittke PM; Huang L Environ Pollut; 2016 Nov; 218():835-843. PubMed ID: 27524252 [TBL] [Abstract][Full Text] [Related]
17. Hydrogeochemistry of arsenic pollution in watersheds influenced by gold mining activities in Paracatu (Minas Gerais State, Brazil). Bidone E; Castilhos Z; Cesar R; Santos MC; Sierpe R; Ferreira M Environ Sci Pollut Res Int; 2016 May; 23(9):8546-55. PubMed ID: 26797944 [TBL] [Abstract][Full Text] [Related]
18. Bioaccessibility of arsenic in mine waste-contaminated soils: a case study from an abandoned arsenic mine in SW England (UK). Palumbo-Roe B; Klinck B J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Jul; 42(9):1251-61. PubMed ID: 17654145 [TBL] [Abstract][Full Text] [Related]
19. Arsenic mineralogy and mobility in the arsenic-rich historical mine waste dump. Filippi M; Drahota P; Machovič V; Böhmová V; Mihaljevič M Sci Total Environ; 2015 Dec; 536():713-728. PubMed ID: 26254072 [TBL] [Abstract][Full Text] [Related]
20. The role of cassiterite controlling arsenic mobility in an abandoned stanniferous tailings impoundment at Llallagua, Bolivia. Romero FM; Canet C; Alfonso P; Zambrana RN; Soto N Sci Total Environ; 2014 May; 481():100-7. PubMed ID: 24589759 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]