These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 23428334)
1. Comparative study of membranotropic action of single- and multi-walled carbon nanotubes. Prylutska S; Bilyy R; Shkandina T; Rotko D; Bychko A; Cherepanov V; Stoika R; Rybalchenko V; Prylutskyy Y; Tsierkezos N; Ritter U J Biosci Bioeng; 2013 Jun; 115(6):674-9. PubMed ID: 23428334 [TBL] [Abstract][Full Text] [Related]
2. Effect of iron-doped multi-walled carbon nanotubes on lipid model and cellular plasma membranes. Prylutska S; Bilyy R; Schkandina T; Bychko A; Cherepanov V; Andreichenko K; Stoika R; Rybalchenko V; Prylutskyy Y; Scharff P; Ritter U Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1486-9. PubMed ID: 24364949 [TBL] [Abstract][Full Text] [Related]
3. Water-soluble pristine fullerenes C60 increase the specific conductivity and capacity of lipid model membrane and form the channels in cellular plasma membrane. Prylutska S; Bilyy R; Overchuk M; Bychko A; Andreichenko K; Stoika R; Rybalchenko V; Prylutskyy Y; Tsierkezos NG; Ritter U J Biomed Nanotechnol; 2012 Jun; 8(3):522-7. PubMed ID: 22764423 [TBL] [Abstract][Full Text] [Related]
4. Comparative analysis of mesothelial invasion by single- and multi-wall carbon nanotubes using computational approach. Akhoon BA; Gupta SK; Verma V J Biomed Nanotechnol; 2011 Feb; 7(1):181-2. PubMed ID: 21485861 [TBL] [Abstract][Full Text] [Related]
5. Modification of Fatty acids in membranes of bacteria: implication for an adaptive mechanism to the toxicity of carbon nanotubes. Zhu B; Xia X; Xia N; Zhang S; Guo X Environ Sci Technol; 2014 Apr; 48(7):4086-95. PubMed ID: 24579825 [TBL] [Abstract][Full Text] [Related]
6. Interactions of Functionalized Multi-Wall Carbon Nanotubes with Giant Phospholipid Vesicles as Model Cellular Membrane System. Pérez-Luna V; Moreno-Aguilar C; Arauz-Lara JL; Aranda-Espinoza S; Quintana M Sci Rep; 2018 Dec; 8(1):17998. PubMed ID: 30573758 [TBL] [Abstract][Full Text] [Related]
7. Biological effects of agglomerated multi-walled carbon nanotubes. Song ZM; Wang L; Chen N; Cao A; Liu Y; Wang H Colloids Surf B Biointerfaces; 2016 Jun; 142():65-73. PubMed ID: 26930035 [TBL] [Abstract][Full Text] [Related]
8. Pulmonary and pleural inflammation after intratracheal instillation of short single-walled and multi-walled carbon nanotubes. Fujita K; Fukuda M; Endoh S; Maru J; Kato H; Nakamura A; Shinohara N; Uchino K; Honda K Toxicol Lett; 2016 Aug; 257():23-37. PubMed ID: 27259835 [TBL] [Abstract][Full Text] [Related]
9. Oxidative biodegradation of single- and multi-walled carbon nanotubes. Russier J; Ménard-Moyon C; Venturelli E; Gravel E; Marcolongo G; Meneghetti M; Doris E; Bianco A Nanoscale; 2011 Mar; 3(3):893-6. PubMed ID: 21116547 [TBL] [Abstract][Full Text] [Related]
10. Effect of chirality and length on the penetrability of single-walled carbon nanotubes into lipid bilayer cell membranes. Skandani AA; Zeineldin R; Al-Haik M Langmuir; 2012 May; 28(20):7872-9. PubMed ID: 22545729 [TBL] [Abstract][Full Text] [Related]
11. Single-walled and multi-walled carbon nanotubes based drug delivery system: Cancer therapy: A review. Dineshkumar B; Krishnakumar K; Bhatt AR; Paul D; Cherian J; John A; Suresh S Indian J Cancer; 2015; 52(3):262-4. PubMed ID: 26905103 [TBL] [Abstract][Full Text] [Related]
13. Interparticle dispersion, membrane curvature, and penetration induced by single-walled carbon nanotubes wrapped with lipids and PEGylated lipids. Lee H J Phys Chem B; 2013 Feb; 117(5):1337-44. PubMed ID: 23214434 [TBL] [Abstract][Full Text] [Related]
14. Fabrication of carbon nanotube sheets and their bilirubin adsorption capacity. Ando K; Shinke K; Yamada S; Koyama T; Takai T; Nakaji S; Ogino T Colloids Surf B Biointerfaces; 2009 Jul; 71(2):255-9. PubMed ID: 19327971 [TBL] [Abstract][Full Text] [Related]
15. LSER model for organic compounds adsorption by single-walled carbon nanotubes: Comparison with multi-walled carbon nanotubes and activated carbon. Yu X; Sun W; Ni J Environ Pollut; 2015 Nov; 206():652-60. PubMed ID: 26319510 [TBL] [Abstract][Full Text] [Related]
16. Lack of mutagenic effect by multi-walled functionalized carbon nanotubes in the somatic cells of Drosophila melanogaster. Machado NM; Lopes JC; Saturnino RS; Fagan EB; Nepomuceno JC Food Chem Toxicol; 2013 Dec; 62():355-60. PubMed ID: 23994091 [TBL] [Abstract][Full Text] [Related]
17. Cytotoxic effect of poly-dispersed single walled carbon nanotubes on erythrocytes in vitro and in vivo. Sachar S; Saxena RK PLoS One; 2011; 6(7):e22032. PubMed ID: 21818289 [TBL] [Abstract][Full Text] [Related]
18. Genotoxicity of short single-wall and multi-wall carbon nanotubes in human bronchial epithelial and mesothelial cells in vitro. Lindberg HK; Falck GC; Singh R; Suhonen S; Järventaus H; Vanhala E; Catalán J; Farmer PB; Savolainen KM; Norppa H Toxicology; 2013 Nov; 313(1):24-37. PubMed ID: 23266321 [TBL] [Abstract][Full Text] [Related]
19. Effect of different carbon nanotubes on cadmium toxicity to Daphnia magna: The role of catalyst impurities and adsorption capacity. Wang X; Qu R; Liu J; Wei Z; Wang L; Yang S; Huang Q; Wang Z Environ Pollut; 2016 Jan; 208(Pt B):732-8. PubMed ID: 26561447 [TBL] [Abstract][Full Text] [Related]
20. The specific heat and effective thermal conductivity of composites containing single-wall and multi-wall carbon nanotubes. Pradhan NR; Duan H; Liang J; Iannacchione GS Nanotechnology; 2009 Jun; 20(24):245705. PubMed ID: 19471077 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]