BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 23428400)

  • 1. Functional proteomics approaches for the identification of transnitrosylase and denitrosylase targets.
    Wu C; Parrott AM; Liu T; Beuve A; Li H
    Methods; 2013 Aug; 62(2):151-60. PubMed ID: 23428400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of endogenously S-nitrosylated proteins in Arabidopsis plantlets: effect of cold stress on cysteine nitrosylation level.
    Puyaubert J; Fares A; Rézé N; Peltier JB; Baudouin E
    Plant Sci; 2014 Feb; 215-216():150-6. PubMed ID: 24388526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solid-phase capture for the detection and relative quantification of S-nitrosoproteins by mass spectrometry.
    Thompson JW; Forrester MT; Moseley MA; Foster MW
    Methods; 2013 Aug; 62(2):130-7. PubMed ID: 23064468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinction of thioredoxin transnitrosylation and denitrosylation target proteins by the ICAT quantitative approach.
    Wu C; Parrott AM; Liu T; Jain MR; Yang Y; Sadoshima J; Li H
    J Proteomics; 2011 Oct; 74(11):2498-509. PubMed ID: 21704743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential S-nitrosylation of proteins in Alzheimer's disease.
    Zahid S; Khan R; Oellerich M; Ahmed N; Asif AR
    Neuroscience; 2014 Jan; 256():126-36. PubMed ID: 24157928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox regulatory mechanism of transnitrosylation by thioredoxin.
    Wu C; Liu T; Chen W; Oka S; Fu C; Jain MR; Parrott AM; Baykal AT; Sadoshima J; Li H
    Mol Cell Proteomics; 2010 Oct; 9(10):2262-75. PubMed ID: 20660346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of S-nitrosylated targets of thioredoxin using a quantitative proteomic approach.
    Benhar M; Thompson JW; Moseley MA; Stamler JS
    Biochemistry; 2010 Aug; 49(32):6963-9. PubMed ID: 20695533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. S-sulfhydration/desulfhydration and S-nitrosylation/denitrosylation: a common paradigm for gasotransmitter signaling by H2S and NO.
    Lu C; Kavalier A; Lukyanov E; Gross SS
    Methods; 2013 Aug; 62(2):177-81. PubMed ID: 23811297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of thioredoxin disulfide targets using a quantitative proteomics approach based on isotope-coded affinity tags.
    Hägglund P; Bunkenborg J; Maeda K; Svensson B
    J Proteome Res; 2008 Dec; 7(12):5270-6. PubMed ID: 19367707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thioredoxin-Dependent Decomposition of Protein S-Nitrosothiols.
    Kneeshaw S; Spoel SH
    Methods Mol Biol; 2018; 1747():281-297. PubMed ID: 29600467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detergent-free biotin switch combined with liquid chromatography/tandem mass spectrometry in the analysis of S-nitrosylated proteins.
    Han P; Chen C
    Rapid Commun Mass Spectrom; 2008 Apr; 22(8):1137-45. PubMed ID: 18335467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative Proteomics Analysis of VEGF-Responsive Endothelial Protein S-Nitrosylation Using Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) and LC-MS/MS.
    Zhang HH; Lechuga TJ; Chen Y; Yang Y; Huang L; Chen DB
    Biol Reprod; 2016 May; 94(5):114. PubMed ID: 27075618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein S-nitrosylation in Plasmodium falciparum.
    Wang L; Delahunty C; Prieto JH; Rahlfs S; Jortzik E; Yates JR; Becker K
    Antioxid Redox Signal; 2014 Jun; 20(18):2923-35. PubMed ID: 24256207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SNOSID, a proteomic method for identification of cysteine S-nitrosylation sites in complex protein mixtures.
    Hao G; Derakhshan B; Shi L; Campagne F; Gross SS
    Proc Natl Acad Sci U S A; 2006 Jan; 103(4):1012-7. PubMed ID: 16418269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative analysis of S-nitrosylated proteins.
    Torta F; Bachi A
    Methods Mol Biol; 2012; 893():405-16. PubMed ID: 22665314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual Labeling Biotin Switch Assay to Reduce Bias Derived From Different Cysteine Subpopulations: A Method to Maximize S-Nitrosylation Detection.
    Chung HS; Murray CI; Venkatraman V; Crowgey EL; Rainer PP; Cole RN; Bomgarden RD; Rogers JC; Balkan W; Hare JM; Kass DA; Van Eyk JE
    Circ Res; 2015 Oct; 117(10):846-57. PubMed ID: 26338901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stabilising cysteinyl thiol oxidation and nitrosation for proteomic analysis.
    Ratnayake S; Dias IH; Lattman E; Griffiths HR
    J Proteomics; 2013 Oct; 92():160-70. PubMed ID: 23796488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of thioredoxin target protein networks in cardiac tissues of a transgenic mouse.
    Fu C; Liu T; Parrott AM; Li H
    Methods Mol Biol; 2013; 1005():181-97. PubMed ID: 23606258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methods for detection and characterization of protein S-nitrosylation.
    Chen YJ; Ching WC; Lin YP; Chen YJ
    Methods; 2013 Aug; 62(2):138-50. PubMed ID: 23628946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thioredoxin and thioredoxin reductase in relation to reversible S-nitrosylation.
    Sengupta R; Holmgren A
    Antioxid Redox Signal; 2013 Jan; 18(3):259-69. PubMed ID: 22702224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.