These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 23428638)

  • 1. The prediction of organelle-targeting peptides in eukaryotic proteins with Grammatical-Restrained Hidden Conditional Random Fields.
    Indio V; Martelli PL; Savojardo C; Fariselli P; Casadio R
    Bioinformatics; 2013 Apr; 29(8):981-8. PubMed ID: 23428638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TPpred3 detects and discriminates mitochondrial and chloroplastic targeting peptides in eukaryotic proteins.
    Savojardo C; Martelli PL; Fariselli P; Casadio R
    Bioinformatics; 2015 Oct; 31(20):3269-75. PubMed ID: 26079349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TPpred2: improving the prediction of mitochondrial targeting peptide cleavage sites by exploiting sequence motifs.
    Savojardo C; Martelli PL; Fariselli P; Casadio R
    Bioinformatics; 2014 Oct; 30(20):2973-4. PubMed ID: 24974200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DeepSig: deep learning improves signal peptide detection in proteins.
    Savojardo C; Martelli PL; Fariselli P; Casadio R
    Bioinformatics; 2018 May; 34(10):1690-1696. PubMed ID: 29280997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MITOPRED: a genome-scale method for prediction of nucleus-encoded mitochondrial proteins.
    Guda C; Fahy E; Subramaniam S
    Bioinformatics; 2004 Jul; 20(11):1785-94. PubMed ID: 15037509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting capacity and conservation of PreP homologues localization in mitochondria of different species.
    Alikhani N; Berglund AK; Engmann T; Spånning E; Vögtle FN; Pavlov P; Meisinger C; Langer T; Glaser E
    J Mol Biol; 2011 Jul; 410(3):400-10. PubMed ID: 21621546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computer-based prediction of mitochondria-targeting peptides.
    Martelli PL; Savojardo C; Fariselli P; Tasco G; Casadio R
    Methods Mol Biol; 2015; 1264():305-20. PubMed ID: 25631024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The signal distinguishing between targeting of outer membrane β-barrel protein to plastids and mitochondria in plants.
    Klinger A; Gosch V; Bodensohn U; Ladig R; Schleiff E
    Biochim Biophys Acta Mol Cell Res; 2019 Apr; 1866(4):663-672. PubMed ID: 30633951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Import determinants of organelle-specific and dual targeting peptides of mitochondria and chloroplasts in Arabidopsis thaliana.
    Ge C; Spånning E; Glaser E; Wieslander A
    Mol Plant; 2014 Jan; 7(1):121-36. PubMed ID: 24214895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TPpred-ATMV: therapeutic peptide prediction by adaptive multi-view tensor learning model.
    Yan K; Lv H; Guo Y; Chen Y; Wu H; Liu B
    Bioinformatics; 2022 May; 38(10):2712-2718. PubMed ID: 35561206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organelle import of proteins with dual targeting properties into mitochondria and chloroplasts takes place by the general import pathways.
    Langner U; Baudisch B; Klösgen RB
    Plant Signal Behav; 2014; 9(8):e29301. PubMed ID: 25763617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Refining the definition of plant mitochondrial presequences through analysis of sorting signals, N-terminal modifications, and cleavage motifs.
    Huang S; Taylor NL; Whelan J; Millar AH
    Plant Physiol; 2009 Jul; 150(3):1272-85. PubMed ID: 19474214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining machine learning and homology-based approaches to accurately predict subcellular localization in Arabidopsis.
    Kaundal R; Saini R; Zhao PX
    Plant Physiol; 2010 Sep; 154(1):36-54. PubMed ID: 20647376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HECTAR: a method to predict subcellular targeting in heterokonts.
    Gschloessl B; Guermeur Y; Cock JM
    BMC Bioinformatics; 2008 Sep; 9():393. PubMed ID: 18811941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In silico methods for identifying organellar and suborganellar targeting peptides in Arabidopsis chloroplast proteins and for predicting the topology of membrane proteins.
    Tanz SK; Small I
    Methods Mol Biol; 2011; 774():243-80. PubMed ID: 21822844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Processing peptidases in mitochondria and chloroplasts.
    Teixeira PF; Glaser E
    Biochim Biophys Acta; 2013 Feb; 1833(2):360-70. PubMed ID: 22495024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conservation of Transit Peptide-Independent Protein Import into the Mitochondrial and Hydrogenosomal Matrix.
    Garg S; Stölting J; Zimorski V; Rada P; Tachezy J; Martin WF; Gould SB
    Genome Biol Evol; 2015 Sep; 7(9):2716-26. PubMed ID: 26338186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental determination of organelle targeting-peptide cleavage sites using transient expression of green fluorescent protein translational fusions.
    Candat A; Poupart P; Andrieu JP; Chevrollier A; Reynier P; Rogniaux H; Avelange-Macherel MH; Macherel D
    Anal Biochem; 2013 Mar; 434(1):44-51. PubMed ID: 23146587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sorting signals, N-terminal modifications and abundance of the chloroplast proteome.
    Zybailov B; Rutschow H; Friso G; Rudella A; Emanuelsson O; Sun Q; van Wijk KJ
    PLoS One; 2008 Apr; 3(4):e1994. PubMed ID: 18431481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis and prediction of mitochondrial targeting signals.
    Habib SJ; Neupert W; Rapaport D
    Methods Cell Biol; 2007; 80():761-81. PubMed ID: 17445721
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.