BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 23428815)

  • 1. Improving effect of metal and oxide nanoparticles encapsulated in porous silica on fermentative biohydrogen production by Clostridium butyricum.
    Beckers L; Hiligsmann S; Lambert SD; Heinrichs B; Thonart P
    Bioresour Technol; 2013 Apr; 133():109-17. PubMed ID: 23428815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement effect of silver nanoparticles on fermentative biohydrogen production using mixed bacteria.
    Zhao W; Zhang Y; Du B; Wei D; Wei Q; Zhao Y
    Bioresour Technol; 2013 Aug; 142():240-5. PubMed ID: 23743428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of nanoparticles to increase biological hydrogen production: the difference in metabolic pathways in batch and continuous reactors.
    Moura AGL; Rabelo CABS; Silva EL; Varesche MBA
    Environ Technol; 2024 Jun; 45(15):3095-3103. PubMed ID: 37129278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Green synthesized iron oxide nanoparticles effect on fermentative hydrogen production by Clostridium acetobutylicum.
    Mohanraj S; Kodhaiyolii S; Rengasamy M; Pugalenthi V
    Appl Biochem Biotechnol; 2014 May; 173(1):318-31. PubMed ID: 24648140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of H2 consumption and its role in continuous fermentative hydrogen production.
    Kraemer JT; Bagley DM
    Water Sci Technol; 2008; 57(5):681-5. PubMed ID: 18401138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of bioaugmentation using Clostridium butyricum on the start-up and the performance of continuous biohydrogen production.
    Sim YB; Yang J; Kim SM; Joo HH; Jung JH; Kim DH; Kim SH
    Bioresour Technol; 2022 Dec; 366():128181. PubMed ID: 36307024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of anaerobiosis strategy and bioreactor geometry on the biochemical response of Clostridium butyricum VPI 1718 during 1,3-propanediol fermentation.
    Chatzifragkou A; Aggelis G; Komaitis M; Zeng AP; Papanikolaou S
    Bioresour Technol; 2011 Nov; 102(22):10625-32. PubMed ID: 21967709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of organic loading rate on biohydrogen production in an up-flow anaerobic packed bed reactor (UAnPBR).
    Ferraz AD; Zaiat M; Gupta M; Elbeshbishy E; Hafez H; Nakhla G
    Bioresour Technol; 2014 Jul; 164():371-9. PubMed ID: 24865326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship among growth parameters for Clostridium butyricum, hydA gene expression, and biohydrogen production in a sucrose-supplemented batch reactor.
    Wang MY; Olson BH; Chang JS
    Appl Microbiol Biotechnol; 2008 Mar; 78(3):525-32. PubMed ID: 18193215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biohydrogen production from Tequila vinasses in an anaerobic sequencing batch reactor: effect of initial substrate concentration, temperature and hydraulic retention time.
    Buitrón G; Carvajal C
    Bioresour Technol; 2010 Dec; 101(23):9071-7. PubMed ID: 20655747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biohydrogen Production from Hydrolysates of Selected Tropical Biomass Wastes with Clostridium Butyricum.
    Dan Jiang ; Fang Z; Chin SX; Tian XF; Su TC
    Sci Rep; 2016 Jun; 6():27205. PubMed ID: 27251222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dark fermentative hydrogen production from enzymatic hydrolysate of xylan and pretreated rice straw by Clostridium butyricum CGS5.
    Lo YC; Lu WC; Chen CY; Chang JS
    Bioresour Technol; 2010 Aug; 101(15):5885-91. PubMed ID: 20385486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effect of initial substrate concentrations and pH on hydrogen production from xylose with Clostridium butyricum T4].
    Qiu J; Xu J; Ren N
    Sheng Wu Gong Cheng Xue Bao; 2009 Jun; 25(6):887-91. PubMed ID: 19777817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Process optimization of biological hydrogen production from molasses by a newly isolated Clostridium butyricum W5.
    Wang X; Jin B
    J Biosci Bioeng; 2009 Feb; 107(2):138-44. PubMed ID: 19217551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biohydrogen production from xylose at extreme thermophilic temperatures (70 degrees C) by mixed culture fermentation.
    Kongjan P; Min B; Angelidaki I
    Water Res; 2009 Mar; 43(5):1414-24. PubMed ID: 19147170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative evaluation of fermentative hydrogen production using Enterobacter cloacae and mixed culture: effect of Pd (II) ion and phytogenic palladium nanoparticles.
    Mohanraj S; Anbalagan K; Kodhaiyolii S; Pugalenthi V
    J Biotechnol; 2014 Dec; 192 Pt A():87-95. PubMed ID: 25456058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dark H2 fermentation from sucrose and xylose using H2-producing indigenous bacteria: feasibility and kinetic studies.
    Lo YC; Chen WM; Hung CH; Chen SD; Chang JS
    Water Res; 2008 Feb; 42(4-5):827-42. PubMed ID: 17889245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of pH and carbon sources on biohydrogen production by co-culture of Clostridium butyricum and Rhodobacter sphaeroides.
    Lee JY; Chen XJ; Lee EJ; Min KS
    J Microbiol Biotechnol; 2012 Mar; 22(3):400-6. PubMed ID: 22450797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Granular activated carbon supplementation alters the metabolic flux of Clostridium butyricum for enhanced biohydrogen production.
    Park JH; Kim DH; Kim HS; Wells GF; Park HD
    Bioresour Technol; 2019 Jun; 281():318-325. PubMed ID: 30826518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-efficiency hydrogen production by an anaerobic, thermophilic enrichment culture from an Icelandic hot spring.
    Koskinen PE; Lay CH; Puhakka JA; Lin PJ; Wu SY; Orlygsson J; Lin CY
    Biotechnol Bioeng; 2008 Nov; 101(4):665-78. PubMed ID: 18814296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.