These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 23428815)

  • 41. Enhanced bio-hydrogen production by the combination of dark- and photo-fermentation in batch culture.
    Liu BF; Ren NQ; Xie GJ; Ding J; Guo WQ; Xing DF
    Bioresour Technol; 2010 Jul; 101(14):5325-9. PubMed ID: 20202826
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Optimisation and enhancement of biohydrogen production using nickel nanoparticles - a novel approach.
    Mullai P; Yogeswari MK; Sridevi K
    Bioresour Technol; 2013 Aug; 141():212-9. PubMed ID: 23582220
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enhanced hydrogen and 1,3-propanediol production from glycerol by fermentation using mixed cultures.
    Selembo PA; Perez JM; Lloyd WA; Logan BE
    Biotechnol Bioeng; 2009 Dec; 104(6):1098-106. PubMed ID: 19623563
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Palladium nanoparticles produced by fermentatively grown bacteria as catalyst for diatrizoate removal with biogenic hydrogen.
    Van Nevel S; Hennebel T; Verschuere S; De Corte S; Boon N; Verstraete W
    Commun Agric Appl Biol Sci; 2011; 76(1):185-8. PubMed ID: 21539227
    [No Abstract]   [Full Text] [Related]  

  • 45. Performance characteristics of a two-stage dark fermentative system producing hydrogen and methane continuously.
    Kyazze G; Dinsdale R; Guwy AJ; Hawkes FR; Premier GC; Hawkes DL
    Biotechnol Bioeng; 2007 Jul; 97(4):759-70. PubMed ID: 17163512
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enhanced dark hydrogen fermentation by addition of ferric oxide nanoparticles using Enterobacter aerogenes.
    Lin R; Cheng J; Ding L; Song W; Liu M; Zhou J; Cen K
    Bioresour Technol; 2016 May; 207():213-9. PubMed ID: 26890796
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of shear velocity on dark fermentation for biohydrogen production using dynamic membrane.
    Sim YB; Jung JH; Park JH; Bakonyi P; Kim SH
    Bioresour Technol; 2020 Jul; 308():123265. PubMed ID: 32272390
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biohydrogen production in alkalithermophilic conditions: Thermobrachium celere as a case study.
    Ciranna A; Santala V; Karp M
    Bioresour Technol; 2011 Sep; 102(18):8714-22. PubMed ID: 21333530
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Whole cell of pure Clostridium butyricum CBT-1 from anaerobic bioreactor effectively hydrolyzes agro-food waste into biohydrogen.
    Shah TA; Zhihe L; Zhiyu L; Zhang A; Lu D; Fang W; Xuan H
    Environ Sci Pollut Res Int; 2023 Jan; 30(2):4853-4865. PubMed ID: 35974282
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A genetic and metabolic approach to redirection of biochemical pathways of Clostridium butyricum for enhancing hydrogen production.
    Cai G; Jin B; Monis P; Saint C
    Biotechnol Bioeng; 2013 Jan; 110(1):338-42. PubMed ID: 22753004
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Photoheterotrophic growth of Chlorella vulgaris ESP6 on organic acids from dark hydrogen fermentation effluents.
    Liu CH; Chang CY; Liao Q; Zhu X; Chang JS
    Bioresour Technol; 2013 Oct; 145():331-6. PubMed ID: 23305898
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ethanol and hydrogen production by two thermophilic, anaerobic bacteria isolated from Icelandic geothermal areas.
    Koskinen PE; Beck SR; Orlygsson J; Puhakka JA
    Biotechnol Bioeng; 2008 Nov; 101(4):679-90. PubMed ID: 18500766
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fermentative H2 production in an upflow anaerobic sludge blanket reactor at various pH values.
    Zhao QB; Yu HQ
    Bioresour Technol; 2008 Mar; 99(5):1353-8. PubMed ID: 17482810
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Production of bio-hydrogen by mesophilic anaerobic fermentation in an acid-phase sequencing batch reactor.
    Cheong DY; Hansen CL; Stevens DK
    Biotechnol Bioeng; 2007 Feb; 96(3):421-32. PubMed ID: 17013946
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of COD/SO(4)2- ratio and Fe(II) under the variable hydraulic retention time (HRT) on fermentative hydrogen production.
    Hwang JH; Cha GC; Jeong TY; Kim DJ; Bhatnagar A; Min B; Song H; Choi JA; Lee JH; Jeong DW; Chung HK; Park YT; Choi J; Abou-Shanab RA; Oh SE; Jeon BH
    Water Res; 2009 Aug; 43(14):3525-33. PubMed ID: 19555990
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Adaptation dynamics of Clostridium butyricum in high 1,3-propanediol content media.
    Chatzifragkou A; Aggelis G; Gardeli C; Galiotou-Panayotou M; Komaitis M; Papanikolaou S
    Appl Microbiol Biotechnol; 2012 Sep; 95(6):1541-52. PubMed ID: 22456628
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hydrogen production by the newly isolated Clostridium beijerinckii RZF-1108.
    Zhao X; Xing D; Fu N; Liu B; Ren N
    Bioresour Technol; 2011 Sep; 102(18):8432-6. PubMed ID: 21421301
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Production of 1,3-propanediol by Clostridium butyricum growing on biodiesel-derived crude glycerol through a non-sterilized fermentation process.
    Chatzifragkou A; Papanikolaou S; Dietz D; Doulgeraki AI; Nychas GJ; Zeng AP
    Appl Microbiol Biotechnol; 2011 Jul; 91(1):101-12. PubMed ID: 21484206
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An electron-flow model can predict complex redox reactions in mixed-culture fermentative bioH2: microbial ecology evidence.
    Lee HS; Krajmalinik-Brown R; Zhang H; Rittmann BE
    Biotechnol Bioeng; 2009 Nov; 104(4):687-97. PubMed ID: 19530077
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Inhibited growth of Clostridium butyricum in efficient H
    Laurinavichene T; Laurinavichius K; Shastik E; Tsygankov A
    Appl Microbiol Biotechnol; 2016 Dec; 100(24):10649-10658. PubMed ID: 27838838
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.