These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 23428824)
1. Inhibitory effect of lignin during cellulose bioconversion: the effect of lignin chemistry on non-productive enzyme adsorption. Rahikainen JL; Martin-Sampedro R; Heikkinen H; Rovio S; Marjamaa K; Tamminen T; Rojas OJ; Kruus K Bioresour Technol; 2013 Apr; 133():270-8. PubMed ID: 23428824 [TBL] [Abstract][Full Text] [Related]
2. Lignin Films from Spruce, Eucalyptus, and Wheat Straw Studied with Electroacoustic and Optical Sensors: Effect of Composition and Electrostatic Screening on Enzyme Binding. Pereira A; Hoeger IC; Ferrer A; Rencoret J; Del Rio JC; Kruus K; Rahikainen J; Kellock M; Gutiérrez A; Rojas OJ Biomacromolecules; 2017 Apr; 18(4):1322-1332. PubMed ID: 28287708 [TBL] [Abstract][Full Text] [Related]
3. Cellulase-lignin interactions-the role of carbohydrate-binding module and pH in non-productive binding. Rahikainen JL; Evans JD; Mikander S; Kalliola A; Puranen T; Tamminen T; Marjamaa K; Kruus K Enzyme Microb Technol; 2013 Oct; 53(5):315-21. PubMed ID: 24034430 [TBL] [Abstract][Full Text] [Related]
4. Reducing non-productive adsorption of cellulase and enhancing enzymatic hydrolysis of lignocelluloses by noncovalent modification of lignin with lignosulfonate. Lou H; Wang M; Lai H; Lin X; Zhou M; Yang D; Qiu X Bioresour Technol; 2013 Oct; 146():478-484. PubMed ID: 23958680 [TBL] [Abstract][Full Text] [Related]
5. Enhanced biomass delignification and enzymatic saccharification of canola straw by steam-explosion pretreatment. Garmakhany AD; Kashaninejad M; Aalami M; Maghsoudlou Y; Khomieri M; Tabil LG J Sci Food Agric; 2014 Jun; 94(8):1607-13. PubMed ID: 24186725 [TBL] [Abstract][Full Text] [Related]
6. Lignin-derived inhibition of monocomponent cellulases and a xylanase in the hydrolysis of lignocellulosics. Kellock M; Rahikainen J; Marjamaa K; Kruus K Bioresour Technol; 2017 May; 232():183-191. PubMed ID: 28231536 [TBL] [Abstract][Full Text] [Related]
7. Effect of temperature on lignin-derived inhibition studied with three structurally different cellobiohydrolases. Rahikainen JL; Moilanen U; Nurmi-Rantala S; Lappas A; Koivula A; Viikari L; Kruus K Bioresour Technol; 2013 Oct; 146():118-125. PubMed ID: 23920120 [TBL] [Abstract][Full Text] [Related]
9. Synergy between endo/exo-glucanases and expansin enhances enzyme adsorption and cellulose conversion. Zhang P; Su R; Duan Y; Cui M; Huang R; Qi W; He Z; Thielemans W Carbohydr Polym; 2021 Feb; 253():117287. PubMed ID: 33278952 [TBL] [Abstract][Full Text] [Related]
10. A model explaining declining rate in hydrolysis of lignocellulose substrates with cellobiohydrolase I (cel7A) and endoglucanase I (cel7B) of Trichoderma reesei. Eriksson T; Karlsson J; Tjerneld F Appl Biochem Biotechnol; 2002 Apr; 101(1):41-60. PubMed ID: 12008866 [TBL] [Abstract][Full Text] [Related]
11. Effect of lignin-based amphiphilic polymers on the cellulase adsorption and enzymatic hydrolysis kinetics of cellulose. Lin X; Wu L; Huang S; Qin Y; Qiu X; Lou H Carbohydr Polym; 2019 Mar; 207():52-58. PubMed ID: 30600035 [TBL] [Abstract][Full Text] [Related]
12. Effect of pretreatment and enzymatic hydrolysis of wheat straw on cell wall composition, hydrophobicity and cellulase adsorption. Heiss-Blanquet S; Zheng D; Lopes Ferreira N; Lapierre C; Baumberger S Bioresour Technol; 2011 May; 102(10):5938-46. PubMed ID: 21450460 [TBL] [Abstract][Full Text] [Related]
13. Preferential adsorption and activity of monocomponent cellulases on lignocellulose thin films with varying lignin content. Martín-Sampedro R; Rahikainen JL; Johansson LS; Marjamaa K; Laine J; Kruus K; Rojas OJ Biomacromolecules; 2013 Apr; 14(4):1231-9. PubMed ID: 23484974 [TBL] [Abstract][Full Text] [Related]
14. Structural insights into the affinity of Cel7A carbohydrate-binding module for lignin. Strobel KL; Pfeiffer KA; Blanch HW; Clark DS J Biol Chem; 2015 Sep; 290(37):22818-26. PubMed ID: 26209638 [TBL] [Abstract][Full Text] [Related]
15. Novel Penicillium cellulases for total hydrolysis of lignocellulosics. Marjamaa K; Toth K; Bromann PA; Szakacs G; Kruus K Enzyme Microb Technol; 2013 May; 52(6-7):358-69. PubMed ID: 23608505 [TBL] [Abstract][Full Text] [Related]
16. The isolation, characterization and effect of lignin isolated from steam pretreated Douglas-fir on the enzymatic hydrolysis of cellulose. Nakagame S; Chandra RP; Kadla JF; Saddler JN Bioresour Technol; 2011 Mar; 102(6):4507-17. PubMed ID: 21256740 [TBL] [Abstract][Full Text] [Related]
17. Adsorption of Trichoderma reesei CBH I and EG II and their catalytic domains on steam pretreated softwood and isolated lignin. Palonen H; Tjerneld F; Zacchi G; Tenkanen M J Biotechnol; 2004 Jan; 107(1):65-72. PubMed ID: 14687972 [TBL] [Abstract][Full Text] [Related]
18. The pre-addition of "blocking" proteins decreases subsequent cellulase adsorption to lignin and enhances cellulose hydrolysis. Liu J; Wu J; Lu Y; Zhang H; Hua Q; Bi R; Rojas O; Renneckar S; Fan S; Xiao Z; Saddler J Bioresour Technol; 2023 Jan; 367():128276. PubMed ID: 36347476 [TBL] [Abstract][Full Text] [Related]
19. Effect of hydrothermal pretreatment severity on lignin inhibition in enzymatic hydrolysis. Kellock M; Maaheimo H; Marjamaa K; Rahikainen J; Zhang H; Holopainen-Mantila U; Ralph J; Tamminen T; Felby C; Kruus K Bioresour Technol; 2019 May; 280():303-312. PubMed ID: 30776657 [TBL] [Abstract][Full Text] [Related]
20. Bicomponent lignocellulose thin films to study the role of surface lignin in cellulolytic reactions. Hoeger IC; Filpponen I; Martin-Sampedro R; Johansson LS; Osterberg M; Laine J; Kelley S; Rojas OJ Biomacromolecules; 2012 Oct; 13(10):3228-40. PubMed ID: 22954385 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]