These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
344 related articles for article (PubMed ID: 23428871)
1. Canonical and kinase activity-independent mechanisms for extracellular signal-regulated kinase 5 (ERK5) nuclear translocation require dissociation of Hsp90 from the ERK5-Cdc37 complex. Erazo T; Moreno A; Ruiz-Babot G; Rodríguez-Asiain A; Morrice NA; Espadamala J; Bayascas JR; Gómez N; Lizcano JM Mol Cell Biol; 2013 Apr; 33(8):1671-86. PubMed ID: 23428871 [TBL] [Abstract][Full Text] [Related]
2. SUMOylation Is Required for ERK5 Nuclear Translocation and ERK5-Mediated Cancer Cell Proliferation. Erazo T; Espinosa-Gil S; Diéguez-Martínez N; Gómez N; Lizcano JM Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32209980 [TBL] [Abstract][Full Text] [Related]
3. Specific regulation of noncanonical p38alpha activation by Hsp90-Cdc37 chaperone complex in cardiomyocyte. Ota A; Zhang J; Ping P; Han J; Wang Y Circ Res; 2010 Apr; 106(8):1404-12. PubMed ID: 20299663 [TBL] [Abstract][Full Text] [Related]
4. ERK5 and Cell Proliferation: Nuclear Localization Is What Matters. Gomez N; Erazo T; Lizcano JM Front Cell Dev Biol; 2016; 4():105. PubMed ID: 27713878 [TBL] [Abstract][Full Text] [Related]
5. Expressed in the yeast Saccharomyces cerevisiae, human ERK5 is a client of the Hsp90 chaperone that complements loss of the Slt2p (Mpk1p) cell integrity stress-activated protein kinase. Truman AW; Millson SH; Nuttall JM; King V; Mollapour M; Prodromou C; Pearl LH; Piper PW Eukaryot Cell; 2006 Nov; 5(11):1914-24. PubMed ID: 16950928 [TBL] [Abstract][Full Text] [Related]
6. Hsp90·Cdc37 Complexes with Protein Kinases Form Cooperatively with Multiple Distinct Interaction Sites. Eckl JM; Scherr MJ; Freiburger L; Daake MA; Sattler M; Richter K J Biol Chem; 2015 Dec; 290(52):30843-54. PubMed ID: 26511315 [TBL] [Abstract][Full Text] [Related]
7. Targeting CDC37: an alternative, kinase-directed strategy for disruption of oncogenic chaperoning. Smith JR; Workman P Cell Cycle; 2009 Feb; 8(3):362-72. PubMed ID: 19177013 [TBL] [Abstract][Full Text] [Related]
8. Dynamic tyrosine phosphorylation modulates cycling of the HSP90-P50(CDC37)-AHA1 chaperone machine. Xu W; Mollapour M; Prodromou C; Wang S; Scroggins BT; Palchick Z; Beebe K; Siderius M; Lee MJ; Couvillon A; Trepel JB; Miyata Y; Matts R; Neckers L Mol Cell; 2012 Aug; 47(3):434-43. PubMed ID: 22727666 [TBL] [Abstract][Full Text] [Related]
9. The chaperones Hsp90 and Cdc37 mediate the maturation and stabilization of protein kinase C through a conserved PXXP motif in the C-terminal tail. Gould CM; Kannan N; Taylor SS; Newton AC J Biol Chem; 2009 Feb; 284(8):4921-35. PubMed ID: 19091746 [TBL] [Abstract][Full Text] [Related]
10. The CDC37-HSP90 chaperone complex co-translationally degrades the nascent kinase-dead mutant of HIPK2. Müller JP; Klempnauer KH FEBS Lett; 2021 Jun; 595(11):1559-1568. PubMed ID: 33786814 [TBL] [Abstract][Full Text] [Related]
11. Signal responsiveness of IkappaB kinases is determined by Cdc37-assisted transient interaction with Hsp90. Hinz M; Broemer M; Arslan SC; Otto A; Mueller EC; Dettmer R; Scheidereit C J Biol Chem; 2007 Nov; 282(44):32311-9. PubMed ID: 17728246 [TBL] [Abstract][Full Text] [Related]
12. Coordinated regulation of serum- and glucocorticoid-inducible kinase 3 by a C-terminal hydrophobic motif and Hsp90-Cdc37 chaperone complex. Wang Y; Xu W; Zhou D; Neckers L; Chen S J Biol Chem; 2014 Feb; 289(8):4815-26. PubMed ID: 24379398 [TBL] [Abstract][Full Text] [Related]
13. Restricting direct interaction of CDC37 with HSP90 does not compromise chaperoning of client proteins. Smith JR; de Billy E; Hobbs S; Powers M; Prodromou C; Pearl L; Clarke PA; Workman P Oncogene; 2015 Jan; 34(1):15-26. PubMed ID: 24292678 [TBL] [Abstract][Full Text] [Related]
14. Cdc37 (cell division cycle 37) restricts Hsp90 (heat shock protein 90) motility by interaction with N-terminal and middle domain binding sites. Eckl JM; Rutz DA; Haslbeck V; Zierer BK; Reinstein J; Richter K J Biol Chem; 2013 May; 288(22):16032-42. PubMed ID: 23569206 [TBL] [Abstract][Full Text] [Related]
15. Molecular chaperone complexes with antagonizing activities regulate stability and activity of the tumor suppressor LKB1. Gaude H; Aznar N; Delay A; Bres A; Buchet-Poyau K; Caillat C; Vigouroux A; Rogon C; Woods A; Vanacker JM; Höhfeld J; Perret C; Meyer P; Billaud M; Forcet C Oncogene; 2012 Mar; 31(12):1582-91. PubMed ID: 21860411 [TBL] [Abstract][Full Text] [Related]
16. Hsp90/p50cdc37 is required for mixed-lineage kinase (MLK) 3 signaling. Zhang H; Wu W; Du Y; Santos SJ; Conrad SE; Watson JT; Grammatikakis N; Gallo KA J Biol Chem; 2004 May; 279(19):19457-63. PubMed ID: 15001580 [TBL] [Abstract][Full Text] [Related]
17. Genome-wide functional screening identifies CDC37 as a crucial HSP90-cofactor for KIT oncogenic expression in gastrointestinal stromal tumors. Mariño-Enríquez A; Ou WB; Cowley G; Luo B; Jonker AH; Mayeda M; Okamoto M; Eilers G; Czaplinski JT; Sicinska E; Wang Y; Taguchi T; Demetri GD; Root DE; Fletcher JA Oncogene; 2014 Apr; 33(14):1872-6. PubMed ID: 23584476 [TBL] [Abstract][Full Text] [Related]
18. Silencing the cochaperone CDC37 destabilizes kinase clients and sensitizes cancer cells to HSP90 inhibitors. Smith JR; Clarke PA; de Billy E; Workman P Oncogene; 2009 Jan; 28(2):157-69. PubMed ID: 18931700 [TBL] [Abstract][Full Text] [Related]
19. Hsp90-dependent activation of protein kinases is regulated by chaperone-targeted dephosphorylation of Cdc37. Vaughan CK; Mollapour M; Smith JR; Truman A; Hu B; Good VM; Panaretou B; Neckers L; Clarke PA; Workman P; Piper PW; Prodromou C; Pearl LH Mol Cell; 2008 Sep; 31(6):886-95. PubMed ID: 18922470 [TBL] [Abstract][Full Text] [Related]
20. p50(cdc37) acting in concert with Hsp90 is required for Raf-1 function. Grammatikakis N; Lin JH; Grammatikakis A; Tsichlis PN; Cochran BH Mol Cell Biol; 1999 Mar; 19(3):1661-72. PubMed ID: 10022854 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]