BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 23428871)

  • 1. Canonical and kinase activity-independent mechanisms for extracellular signal-regulated kinase 5 (ERK5) nuclear translocation require dissociation of Hsp90 from the ERK5-Cdc37 complex.
    Erazo T; Moreno A; Ruiz-Babot G; Rodríguez-Asiain A; Morrice NA; Espadamala J; Bayascas JR; Gómez N; Lizcano JM
    Mol Cell Biol; 2013 Apr; 33(8):1671-86. PubMed ID: 23428871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SUMOylation Is Required for ERK5 Nuclear Translocation and ERK5-Mediated Cancer Cell Proliferation.
    Erazo T; Espinosa-Gil S; Diéguez-Martínez N; Gómez N; Lizcano JM
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32209980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific regulation of noncanonical p38alpha activation by Hsp90-Cdc37 chaperone complex in cardiomyocyte.
    Ota A; Zhang J; Ping P; Han J; Wang Y
    Circ Res; 2010 Apr; 106(8):1404-12. PubMed ID: 20299663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ERK5 and Cell Proliferation: Nuclear Localization Is What Matters.
    Gomez N; Erazo T; Lizcano JM
    Front Cell Dev Biol; 2016; 4():105. PubMed ID: 27713878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expressed in the yeast Saccharomyces cerevisiae, human ERK5 is a client of the Hsp90 chaperone that complements loss of the Slt2p (Mpk1p) cell integrity stress-activated protein kinase.
    Truman AW; Millson SH; Nuttall JM; King V; Mollapour M; Prodromou C; Pearl LH; Piper PW
    Eukaryot Cell; 2006 Nov; 5(11):1914-24. PubMed ID: 16950928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hsp90·Cdc37 Complexes with Protein Kinases Form Cooperatively with Multiple Distinct Interaction Sites.
    Eckl JM; Scherr MJ; Freiburger L; Daake MA; Sattler M; Richter K
    J Biol Chem; 2015 Dec; 290(52):30843-54. PubMed ID: 26511315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting CDC37: an alternative, kinase-directed strategy for disruption of oncogenic chaperoning.
    Smith JR; Workman P
    Cell Cycle; 2009 Feb; 8(3):362-72. PubMed ID: 19177013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic tyrosine phosphorylation modulates cycling of the HSP90-P50(CDC37)-AHA1 chaperone machine.
    Xu W; Mollapour M; Prodromou C; Wang S; Scroggins BT; Palchick Z; Beebe K; Siderius M; Lee MJ; Couvillon A; Trepel JB; Miyata Y; Matts R; Neckers L
    Mol Cell; 2012 Aug; 47(3):434-43. PubMed ID: 22727666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The chaperones Hsp90 and Cdc37 mediate the maturation and stabilization of protein kinase C through a conserved PXXP motif in the C-terminal tail.
    Gould CM; Kannan N; Taylor SS; Newton AC
    J Biol Chem; 2009 Feb; 284(8):4921-35. PubMed ID: 19091746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The CDC37-HSP90 chaperone complex co-translationally degrades the nascent kinase-dead mutant of HIPK2.
    Müller JP; Klempnauer KH
    FEBS Lett; 2021 Jun; 595(11):1559-1568. PubMed ID: 33786814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Signal responsiveness of IkappaB kinases is determined by Cdc37-assisted transient interaction with Hsp90.
    Hinz M; Broemer M; Arslan SC; Otto A; Mueller EC; Dettmer R; Scheidereit C
    J Biol Chem; 2007 Nov; 282(44):32311-9. PubMed ID: 17728246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coordinated regulation of serum- and glucocorticoid-inducible kinase 3 by a C-terminal hydrophobic motif and Hsp90-Cdc37 chaperone complex.
    Wang Y; Xu W; Zhou D; Neckers L; Chen S
    J Biol Chem; 2014 Feb; 289(8):4815-26. PubMed ID: 24379398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Restricting direct interaction of CDC37 with HSP90 does not compromise chaperoning of client proteins.
    Smith JR; de Billy E; Hobbs S; Powers M; Prodromou C; Pearl L; Clarke PA; Workman P
    Oncogene; 2015 Jan; 34(1):15-26. PubMed ID: 24292678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cdc37 (cell division cycle 37) restricts Hsp90 (heat shock protein 90) motility by interaction with N-terminal and middle domain binding sites.
    Eckl JM; Rutz DA; Haslbeck V; Zierer BK; Reinstein J; Richter K
    J Biol Chem; 2013 May; 288(22):16032-42. PubMed ID: 23569206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular chaperone complexes with antagonizing activities regulate stability and activity of the tumor suppressor LKB1.
    Gaude H; Aznar N; Delay A; Bres A; Buchet-Poyau K; Caillat C; Vigouroux A; Rogon C; Woods A; Vanacker JM; Höhfeld J; Perret C; Meyer P; Billaud M; Forcet C
    Oncogene; 2012 Mar; 31(12):1582-91. PubMed ID: 21860411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hsp90/p50cdc37 is required for mixed-lineage kinase (MLK) 3 signaling.
    Zhang H; Wu W; Du Y; Santos SJ; Conrad SE; Watson JT; Grammatikakis N; Gallo KA
    J Biol Chem; 2004 May; 279(19):19457-63. PubMed ID: 15001580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide functional screening identifies CDC37 as a crucial HSP90-cofactor for KIT oncogenic expression in gastrointestinal stromal tumors.
    Mariño-Enríquez A; Ou WB; Cowley G; Luo B; Jonker AH; Mayeda M; Okamoto M; Eilers G; Czaplinski JT; Sicinska E; Wang Y; Taguchi T; Demetri GD; Root DE; Fletcher JA
    Oncogene; 2014 Apr; 33(14):1872-6. PubMed ID: 23584476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silencing the cochaperone CDC37 destabilizes kinase clients and sensitizes cancer cells to HSP90 inhibitors.
    Smith JR; Clarke PA; de Billy E; Workman P
    Oncogene; 2009 Jan; 28(2):157-69. PubMed ID: 18931700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hsp90-dependent activation of protein kinases is regulated by chaperone-targeted dephosphorylation of Cdc37.
    Vaughan CK; Mollapour M; Smith JR; Truman A; Hu B; Good VM; Panaretou B; Neckers L; Clarke PA; Workman P; Piper PW; Prodromou C; Pearl LH
    Mol Cell; 2008 Sep; 31(6):886-95. PubMed ID: 18922470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. p50(cdc37) acting in concert with Hsp90 is required for Raf-1 function.
    Grammatikakis N; Lin JH; Grammatikakis A; Tsichlis PN; Cochran BH
    Mol Cell Biol; 1999 Mar; 19(3):1661-72. PubMed ID: 10022854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.