These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 23428927)
21. Mechanical Interaction of an Expanding Coiled Stent with a Plaque-Containing Arterial Wall: A Finite Element Analysis. Welch TR; Eberhart RC; Banerjee S; Chuong CJ Cardiovasc Eng Technol; 2016 Mar; 7(1):58-68. PubMed ID: 26621671 [TBL] [Abstract][Full Text] [Related]
22. Computational model of blood flow in the aorto-coronary bypass graft. Sankaranarayanan M; Chua LP; Ghista DN; Tan YS Biomed Eng Online; 2005 Mar; 4():14. PubMed ID: 15745458 [TBL] [Abstract][Full Text] [Related]
23. A finite element investigation on plaque vulnerability in realistic healthy and atherosclerotic human coronary arteries. Karimi A; Navidbakhsh M; Faghihi S; Shojaei A; Hassani K Proc Inst Mech Eng H; 2013 Feb; 227(2):148-61. PubMed ID: 23513986 [TBL] [Abstract][Full Text] [Related]
25. Behaviour of two typical stents towards a new stent evolution. Simão M; Ferreira JM; Mora-Rodriguez J; Fragata J; Ramos HM Med Biol Eng Comput; 2017 Jun; 55(6):1019-1037. PubMed ID: 27669700 [TBL] [Abstract][Full Text] [Related]
26. A numerical study on hemodynamics in the left coronary bifurcation with normal and hypertension conditions. Bahrami S; Norouzi M Biomech Model Mechanobiol; 2018 Dec; 17(6):1785-1796. PubMed ID: 30027356 [TBL] [Abstract][Full Text] [Related]
27. Combination of plaque burden, wall shear stress, and plaque phenotype has incremental value for prediction of coronary atherosclerotic plaque progression and vulnerability. Corban MT; Eshtehardi P; Suo J; McDaniel MC; Timmins LH; Rassoul-Arzrumly E; Maynard C; Mekonnen G; King S; Quyyumi AA; Giddens DP; Samady H Atherosclerosis; 2014 Feb; 232(2):271-6. PubMed ID: 24468138 [TBL] [Abstract][Full Text] [Related]
28. Prediction of coronary plaque location on arteries having myocardial bridge, using finite element models. Nikolić D; Radović M; Aleksandrić S; Tomašević M; Filipović N Comput Methods Programs Biomed; 2014 Nov; 117(2):137-44. PubMed ID: 25139775 [TBL] [Abstract][Full Text] [Related]
29. Does microcalcification increase the risk of rupture? Cilla M; Monterde D; Peña E; Martínez MÁ Proc Inst Mech Eng H; 2013 May; 227(5):588-99. PubMed ID: 23637269 [TBL] [Abstract][Full Text] [Related]
30. Plaque development, vessel curvature, and wall shear stress in coronary arteries assessed by X-ray angiography and intravascular ultrasound. Wahle A; Lopez JJ; Olszewski ME; Vigmostad SC; Chandran KB; Rossen JD; Sonka M Med Image Anal; 2006 Aug; 10(4):615-31. PubMed ID: 16644262 [TBL] [Abstract][Full Text] [Related]
31. Alterations in regional vascular geometry produced by theoretical stent implantation influence distributions of wall shear stress: analysis of a curved coronary artery using 3D computational fluid dynamics modeling. LaDisa JF; Olson LE; Douglas HA; Warltier DC; Kersten JR; Pagel PS Biomed Eng Online; 2006 Jun; 5():40. PubMed ID: 16780592 [TBL] [Abstract][Full Text] [Related]
32. Influence of plaque calcifications on coronary stent fracture: a numerical fatigue life analysis including cardiac wall movement. Morlacchi S; Pennati G; Petrini L; Dubini G; Migliavacca F J Biomech; 2014 Mar; 47(4):899-907. PubMed ID: 24468208 [TBL] [Abstract][Full Text] [Related]
34. The impact of scaled boundary conditions on wall shear stress computations in atherosclerotic human coronary bifurcations. Schrauwen JT; Schwarz JC; Wentzel JJ; van der Steen AF; Siebes M; Gijsen FJ Am J Physiol Heart Circ Physiol; 2016 May; 310(10):H1304-12. PubMed ID: 26945083 [TBL] [Abstract][Full Text] [Related]
35. In-vivo prediction of human coronary plaque rupture location using intravascular ultrasound and the finite element method. Ohayon J; Teppaz P; Finet G; Rioufol G Coron Artery Dis; 2001 Dec; 12(8):655-63. PubMed ID: 11811331 [TBL] [Abstract][Full Text] [Related]
36. Comparison of left anterior descending coronary artery hemodynamics before and after angioplasty. Ramaswamy SD; Vigmostad SC; Wahle A; Lai YG; Olszewski ME; Braddy KC; Brennan TM; Rossen JD; Sonka M; Chandran KB J Biomech Eng; 2006 Feb; 128(1):40-8. PubMed ID: 16532616 [TBL] [Abstract][Full Text] [Related]
37. Is arterial wall-strain stiffening an additional process responsible for atherosclerosis in coronary bifurcations?: an in vivo study based on dynamic CT and MRI. Ohayon J; Gharib AM; Garcia A; Heroux J; Yazdani SK; Malvè M; Tracqui P; Martinez MA; Doblare M; Finet G; Pettigrew RI Am J Physiol Heart Circ Physiol; 2011 Sep; 301(3):H1097-106. PubMed ID: 21685261 [TBL] [Abstract][Full Text] [Related]
39. Effect of the local hemodynamic environment on the de novo development and progression of eccentric coronary atherosclerosis in humans: insights from PREDICTION. Papafaklis MI; Takahashi S; Antoniadis AP; Coskun AU; Tsuda M; Mizuno S; Andreou I; Nakamura S; Makita Y; Hirohata A; Saito S; Feldman CL; Stone PH Atherosclerosis; 2015 May; 240(1):205-11. PubMed ID: 25801012 [TBL] [Abstract][Full Text] [Related]
40. Comprehensive Assessment of Coronary Plaque Progression With Advanced Intravascular Imaging, Physiological Measures, and Wall Shear Stress: A Pilot Double-Blinded Randomized Controlled Clinical Trial of Nebivolol Versus Atenolol in Nonobstructive Coronary Artery Disease. Hung OY; Molony D; Corban MT; Rasoul-Arzrumly E; Maynard C; Eshtehardi P; Dhawan S; Timmins LH; Piccinelli M; Ahn SG; Gogas BD; McDaniel MC; Quyyumi AA; Giddens DP; Samady H J Am Heart Assoc; 2016 Jan; 5(1):. PubMed ID: 26811165 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]