These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 23429237)

  • 21. Effect of total laryngectomy on vowel production: An acoustic study of vowels produced by alaryngeal speakers of Cantonese.
    Ng ML; Woo HK
    Int J Speech Lang Pathol; 2021 Dec; 23(6):652-661. PubMed ID: 33615923
    [No Abstract]   [Full Text] [Related]  

  • 22. Vibratory analysis of the neoglottis after surgical intervention of cricopharyngeal myotomy and implantation of tracheal cartilage.
    Hirano S; Kojima H; Shoji K; Kaneko K; Tateya I; Asato R; Omori K
    Arch Otolaryngol Head Neck Surg; 1999 Dec; 125(12):1335-40. PubMed ID: 10604411
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Subglottal pressure oscillations accompanying phonation.
    Sundberg J; Scherer R; Hess M; Müller F; Granqvist S
    J Voice; 2013 Jul; 27(4):411-21. PubMed ID: 23809566
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nonlinear dynamical analysis of laryngeal, esophageal, and tracheoesophageal speech of Cantonese.
    Yan N; Ng ML; Wang D; Zhang L; Chan V; Ho RS
    J Voice; 2013 Jan; 27(1):101-10. PubMed ID: 23044459
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Objective estimation of tracheoesophageal speech ratings using an auditory model.
    McDonald R; Parsa V; Doyle PC
    J Acoust Soc Am; 2010 Feb; 127(2):1032-41. PubMed ID: 20136224
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The intelligibility of tracheoesophageal speech, with an emphasis on the voiced-voiceless distinction.
    Jongmans P; Hilgers FJ; Pols LC; van As-Brooks CJ
    Logoped Phoniatr Vocol; 2006; 31(4):172-81. PubMed ID: 17114130
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Acoustic analyses clarify voiced-voiceless distinction in tracheoesophageal speech.
    Saito M; Kinishi M; Amatsu M
    Acta Otolaryngol; 2000 Sep; 120(6):771-7. PubMed ID: 11099157
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fundamental frequency, intensity, and vowel duration characteristics related to perception of Cantonese alaryngeal speech.
    Ng ML; Gilbert HR; Lerman JW
    Folia Phoniatr Logop; 2001; 53(1):36-47. PubMed ID: 11125259
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modeling measured glottal volume velocity waveforms.
    Verneuil A; Berry DA; Kreiman J; Gerratt BR; Ye M; Berke GS
    Ann Otol Rhinol Laryngol; 2003 Feb; 112(2):120-31. PubMed ID: 12597284
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The pitch rise paradigm: a new task for real-time endoscopy of non-stationary phonation.
    Rasp O; Lohscheller J; Doellinger M; Eysholdt U; Hoppe U
    Folia Phoniatr Logop; 2006; 58(3):175-85. PubMed ID: 16636565
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electroglottography and laryngeal articulation in speech.
    Hong KH; Kim HK
    Folia Phoniatr Logop; 1997; 49(5):225-33. PubMed ID: 9311157
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Aerodynamic and myoelastic contributions to tracheoesophageal voice production.
    Moon JB; Weinberg B
    J Speech Hear Res; 1987 Sep; 30(3):387-95. PubMed ID: 3669645
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Estimation of the voice source from speech pressure signals: evaluation of an inverse filtering technique using physical modelling of voice production.
    Alku P; Story B; Airas M
    Folia Phoniatr Logop; 2006; 58(2):102-13. PubMed ID: 16479132
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Perception of stop consonants produced by esophageal and tracheoesophageal speakers.
    Gomyo Y; Doyle PC
    J Otolaryngol; 1989 Jun; 18(4):184-8. PubMed ID: 2739001
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fundamental frequency and gender identification in standard esophageal and tracheoesophageal speakers.
    Bellandese MH
    J Commun Disord; 2009; 42(2):89-99. PubMed ID: 18962672
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Acoustic analysis of trill sounds.
    Dhananjaya N; Yegnanarayana B; Bhaskararao P
    J Acoust Soc Am; 2012 Apr; 131(4):3141-52. PubMed ID: 22501086
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of bandwidth on glottal airflow waveforms estimated by inverse filtering.
    Alku P; Vilkman E
    J Acoust Soc Am; 1995 Aug; 98(2 Pt 1):763-7. PubMed ID: 7642814
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A case report in changes in phonatory physiology following voice therapy: application of high-speed imaging.
    Patel RR; Pickering J; Stemple J; Donohue KD
    J Voice; 2012 Nov; 26(6):734-41. PubMed ID: 22717492
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An acoustic study of Cantonese alaryngeal speech in different speaking conditions.
    Cox SR; Huang T; Chen WR; Ng ML
    J Acoust Soc Am; 2023 May; 153(5):2973. PubMed ID: 37212513
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inverse filtering of nasalized vowels using synthesized speech.
    Gobl C; Mahshie J
    J Voice; 2013 Mar; 27(2):155-69. PubMed ID: 23231805
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.