These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

390 related articles for article (PubMed ID: 23429259)

  • 1. Widespread long noncoding RNAs as endogenous target mimics for microRNAs in plants.
    Wu HJ; Wang ZM; Wang M; Wang XJ
    Plant Physiol; 2013 Apr; 161(4):1875-84. PubMed ID: 23429259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PeTMbase: A Database of Plant Endogenous Target Mimics (eTMs).
    Karakülah G; Yücebilgili Kurtoğlu K; Unver T
    PLoS One; 2016; 11(12):e0167698. PubMed ID: 27936097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Target mimics: an embedded layer of microRNA-involved gene regulatory networks in plants.
    Meng Y; Shao C; Wang H; Jin Y
    BMC Genomics; 2012 May; 13():197. PubMed ID: 22613869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A transcriptome-wide study on the microRNA- and the Argonaute 1-enriched small RNA-mediated regulatory networks involved in plant leaf senescence.
    Qin J; Ma X; Yi Z; Tang Z; Meng Y
    Plant Biol (Stuttg); 2016 Mar; 18(2):197-205. PubMed ID: 26206233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning and characterization of microRNAs from rice.
    Sunkar R; Girke T; Jain PK; Zhu JK
    Plant Cell; 2005 May; 17(5):1397-411. PubMed ID: 15805478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA.
    Jones-Rhoades MW; Bartel DP
    Mol Cell; 2004 Jun; 14(6):787-99. PubMed ID: 15200956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets.
    Wang XJ; Reyes JL; Chua NH; Gaasterland T
    Genome Biol; 2004; 5(9):R65. PubMed ID: 15345049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational identification of novel family members of microRNA genes in Arabidopsis thaliana and Oryza sativa.
    Li Y; Li W; Jin YX
    Acta Biochim Biophys Sin (Shanghai); 2005 Feb; 37(2):75-87. PubMed ID: 15685364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovery and Annotation of Plant Endogenous Target Mimicry Sequences from Public Transcriptome Libraries: A Case Study of Prunus persica.
    Karakülah G
    J Integr Bioinform; 2017 Jun; 14(4):. PubMed ID: 28672765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mining plant endogenous target mimics from miRNA-lncRNA interactions based on dual-path parallel ensemble pruning method.
    Kang Q; Meng J; Su C; Luan Y
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34662389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plant polycistronic precursors containing non-homologous microRNAs target transcripts encoding functionally related proteins.
    Merchan F; Boualem A; Crespi M; Frugier F
    Genome Biol; 2009; 10(12):R136. PubMed ID: 19951405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of microRNA genes in Oryza sativa and Arabidopsis thaliana: an update of the inverted duplication model.
    Zhang Y; Jiang WK; Gao LZ
    PLoS One; 2011; 6(12):e28073. PubMed ID: 22194805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A long noncoding RNA involved in rice reproductive development by negatively regulating osa-miR160.
    Wang M; Wu HJ; Fang J; Chu C; Wang XJ
    Sci Bull (Beijing); 2017 Apr; 62(7):470-475. PubMed ID: 36659255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA decoys: an emerging component of plant regulatory networks?
    Banks IR; Zhang Y; Wiggins BE; Heck GR; Ivashuta S
    Plant Signal Behav; 2012 Sep; 7(9):1188-93. PubMed ID: 22899065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes.
    Bonnet E; Wuyts J; Rouzé P; Van de Peer Y
    Proc Natl Acad Sci U S A; 2004 Aug; 101(31):11511-6. PubMed ID: 15272084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A diverse set of microRNAs and microRNA-like small RNAs in developing rice grains.
    Zhu QH; Spriggs A; Matthew L; Fan L; Kennedy G; Gubler F; Helliwell C
    Genome Res; 2008 Sep; 18(9):1456-65. PubMed ID: 18687877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigating the regulatory roles of the microRNAs and the Argonaute 1-enriched small RNAs in plant metabolism.
    Qin J; Tang Z; Ma X; Meng Y
    Gene; 2017 Sep; 628():180-189. PubMed ID: 28698160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transposable element-associated microRNA hairpins produce 21-nt sRNAs integrated into typical microRNA pathways in rice.
    Ou-Yang F; Luo QJ; Zhang Y; Richardson CR; Jiang Y; Rock CD
    Funct Integr Genomics; 2013 Jun; 13(2):207-16. PubMed ID: 23420033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide identification of reverse complementary microRNA genes in plants.
    Shao C; Ma X; Xu X; Wang H; Meng Y
    PLoS One; 2012; 7(10):e46991. PubMed ID: 23110057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide identification and functional analysis of lincRNAs acting as miRNA targets or decoys in maize.
    Fan C; Hao Z; Yan J; Li G
    BMC Genomics; 2015 Oct; 16():793. PubMed ID: 26470872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.