These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 23429705)

  • 1. Speleothems reveal 500,000-year history of Siberian permafrost.
    Vaks A; Gutareva OS; Breitenbach SF; Avirmed E; Mason AJ; Thomas AL; Osinzev AV; Kononov AM; Henderson GM
    Science; 2013 Apr; 340(6129):183-6. PubMed ID: 23429705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increasing Pleistocene permafrost persistence and carbon cycle conundrums inferred from Canadian speleothems.
    Biller-Celander N; Shakun JD; McGee D; Wong CI; Reyes AV; Hardt B; Tal I; Ford DC; Lauriol B
    Sci Adv; 2021 Apr; 7(18):. PubMed ID: 33910910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methane bubbling from northern lakes: present and future contributions to the global methane budget.
    Walter KM; Smith LC; Chapin FS
    Philos Trans A Math Phys Eng Sci; 2007 Jul; 365(1856):1657-76. PubMed ID: 17513268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Palaeoclimate evidence of vulnerable permafrost during times of low sea ice.
    Vaks A; Mason AJ; Breitenbach SFM; Kononov AM; Osinzev AV; Rosensaft M; Borshevsky A; Gutareva OS; Henderson GM
    Nature; 2020 Jan; 577(7789):221-225. PubMed ID: 31915398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming.
    Walter KM; Zimov SA; Chanton JP; Verbyla D; Chapin FS
    Nature; 2006 Sep; 443(7107):71-5. PubMed ID: 16957728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial community structure and carbon turnover in permafrost-affected soils of the Lena Delta, northeastern Siberia.
    Wagner D; Kobabe S; Liebner S
    Can J Microbiol; 2009 Jan; 55(1):73-83. PubMed ID: 19190703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon accumulation in a permafrost polygon peatland: steady long-term rates in spite of shifts between dry and wet conditions.
    Gao Y; Couwenberg J
    Glob Chang Biol; 2015 Feb; 21(2):803-15. PubMed ID: 25230297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ancient permafrost and a future, warmer Arctic.
    Froese DG; Westgate JA; Reyes AV; Enkin RJ; Preece SJ
    Science; 2008 Sep; 321(5896):1648. PubMed ID: 18801991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methanogenic community composition and anaerobic carbon turnover in submarine permafrost sediments of the Siberian Laptev Sea.
    Koch K; Knoblauch C; Wagner D
    Environ Microbiol; 2009 Mar; 11(3):657-68. PubMed ID: 19278451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remobilization of dormant carbon from Siberian-Arctic permafrost during three past warming events.
    Martens J; Wild B; Muschitiello F; O'Regan M; Jakobsson M; Semiletov I; Dudarev OV; Gustafsson Ö
    Sci Adv; 2020 Oct; 6(42):. PubMed ID: 33067229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methanogenic communities in permafrost-affected soils of the Laptev Sea coast, Siberian Arctic, characterized by 16S rRNA gene fingerprints.
    Ganzert L; Jurgens G; Münster U; Wagner D
    FEMS Microbiol Ecol; 2007 Feb; 59(2):476-88. PubMed ID: 16978241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Palaeoclimatology: the record for marine isotopic stage 11.
    Raynaud D; Barnola JM; Souchez R; Lorrain R; Petit JR; Duval P; Lipenkov VY
    Nature; 2005 Jul; 436(7047):39-40. PubMed ID: 16001055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Climate driven release of carbon and mercury from permafrost mires increases mercury loading to sub-arctic lakes.
    Rydberg J; Klaminder J; Rosén P; Bindler R
    Sci Total Environ; 2010 Sep; 408(20):4778-83. PubMed ID: 20674959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Occurrence of Taeniidae in a Middle Pleistocene speleothem of the Bàsura cave (Toirano, Liguria, Italy).
    Lartigot-Campin AS; Rousseau L; Moné H
    Int J Paleopathol; 2022 Jun; 37():60-67. PubMed ID: 35512547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Utilization of ancient permafrost carbon in headwaters of Arctic fluvial networks.
    Mann PJ; Eglinton TI; McIntyre CP; Zimov N; Davydova A; Vonk JE; Holmes RM; Spencer RG
    Nat Commun; 2015 Jul; 6():7856. PubMed ID: 26206473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gas hydrates: past and future geohazard?
    Maslin M; Owen M; Betts R; Day S; Dunkley Jones T; Ridgwell A
    Philos Trans A Math Phys Eng Sci; 2010 May; 368(1919):2369-93. PubMed ID: 20403833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Snowball Earth termination by destabilization of equatorial permafrost methane clathrate.
    Kennedy M; Mrofka D; von der Borch C
    Nature; 2008 May; 453(7195):642-5. PubMed ID: 18509441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continental pleistocene climatic variations from speleothem age and isotopic data.
    Thompson P; Schwarcz HP; Ford DC
    Science; 1974 May; 184(4139):893-5. PubMed ID: 17782379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muted climate variations in continental Siberia during the mid-Pleistocene epoch.
    Prokopenko AA; Williams DF; Kuzmin MI; Karabanov EB; Khursevich GK; Peck JA
    Nature; 2002 Jul; 418(6893):65-8. PubMed ID: 12097906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of fire on the geochemistry of speleothem-forming drip water in a sub-alpine cave.
    Coleborn K; Baker A; Treble PC; Andersen MS; Baker A; Tadros CV; Tozer M; Fairchild IJ; Spate A; Meehan S
    Sci Total Environ; 2018 Nov; 642():408-420. PubMed ID: 29906731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.