These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 23429717)

  • 1. Building a morbidostat: an automated continuous-culture device for studying bacterial drug resistance under dynamically sustained drug inhibition.
    Toprak E; Veres A; Yildiz S; Pedraza JM; Chait R; Paulsson J; Kishony R
    Nat Protoc; 2013 Mar; 8(3):555-67. PubMed ID: 23429717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and Use of a Low Cost, Automated Morbidostat for Adaptive Evolution of Bacteria Under Antibiotic Drug Selection.
    Liu PC; Lee YT; Wang CY; Yang YT
    J Vis Exp; 2016 Sep; (115):. PubMed ID: 27768065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental evolution in morbidostat reveals converging genomic trajectories on the path to triclosan resistance.
    Leyn SA; Zlamal JE; Kurnasov OV; Li X; Elane M; Myjak L; Godzik M; de Crecy A; Garcia-Alcalde F; Ebeling M; Osterman AL
    Microb Genom; 2021 May; 7(5):. PubMed ID: 33945454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Following evolution of bacterial antibiotic resistance in real time.
    Rosenthal AZ; Elowitz MB
    Nat Genet; 2011 Dec; 44(1):11-3. PubMed ID: 22200772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A rapid method for post-antibiotic bacterial susceptibility testing.
    Heller AA; Spence DM
    PLoS One; 2019; 14(1):e0210534. PubMed ID: 30629681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction and optimization of a 'NG Morbidostat' - An automated continuous-culture device for studying the pathways towards antibiotic resistance in
    Verhoeven E; Abdellati S; Nys P; Laumen J; De Baetselier I; Crucitti T; Kenyon C
    F1000Res; 2019; 8():560. PubMed ID: 32318263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary paths to antibiotic resistance under dynamically sustained drug selection.
    Toprak E; Veres A; Michel JB; Chait R; Hartl DL; Kishony R
    Nat Genet; 2011 Dec; 44(1):101-5. PubMed ID: 22179135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shared and Unique Evolutionary Trajectories to Ciprofloxacin Resistance in Gram-Negative Bacterial Pathogens.
    Zlamal JE; Leyn SA; Iyer M; Elane ML; Wong NA; Wamsley JW; Vercruysse M; Garcia-Alcalde F; Osterman AL
    mBio; 2021 Jun; 12(3):e0098721. PubMed ID: 34154405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying the Determinants of Evolutionary Dynamics Leading to Drug Resistance.
    Chevereau G; Dravecká M; Batur T; Guvenek A; Ayhan DH; Toprak E; Bollenbach T
    PLoS Biol; 2015; 13(11):e1002299. PubMed ID: 26581035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A low-cost, open-source evolutionary bioreactor and its educational use.
    Gopalakrishnan V; Crozier D; Card KJ; Chick LD; Krishnan NP; McClure E; Pelesko J; Williamson DFK; Nichol D; Mandal S; Bonomo RA; Scott JG
    Elife; 2022 Nov; 11():. PubMed ID: 36317871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutagenic action of edeine in bacteria. II. Induction of streptomycin resistance in Escherichia coli and Bacillus subtilis.
    Sander-Tabaczyńska A; Tabaczyński MM
    Acta Microbiol Pol A; 1971; 3(1):29-33. PubMed ID: 5004012
    [No Abstract]   [Full Text] [Related]  

  • 12. Differential antibacterial activity of genistein arising from global inhibition of DNA, RNA and protein synthesis in some bacterial strains.
    Ulanowska K; Tkaczyk A; Konopa G; Wegrzyn G
    Arch Microbiol; 2006 Jan; 184(5):271-8. PubMed ID: 16328542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tellurite-reduction-based assay for screening potential antibiotics.
    Blaškovič D; Turňa J
    J Med Microbiol; 2012 Jan; 61(Pt 1):160-161. PubMed ID: 21890515
    [No Abstract]   [Full Text] [Related]  

  • 14. Mutagenic action of edeine in bacteria. I. Estimation of the minimal mutagenic concentration of antibiotic.
    Tabaczyński MM; Sander-Tabaczyńska A
    Acta Microbiol Pol A; 1970; 2(4):179-83. PubMed ID: 4994235
    [No Abstract]   [Full Text] [Related]  

  • 15. Kill kinetics of bacteria under fluctuating concentrations of various antibiotics. I. Description of the model.
    König P; Guggenbichler JP; Semenitz E; Foisner W
    Chemotherapy; 1986; 32(1):37-43. PubMed ID: 3081303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid screening of antibiotic toxicity in an automated microdroplet system.
    Churski K; Kaminski TS; Jakiela S; Kamysz W; Baranska-Rybak W; Weibel DB; Garstecki P
    Lab Chip; 2012 May; 12(9):1629-37. PubMed ID: 22422170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Colistin susceptibility test evaluation of multiple-resistance-level Pseudomonas aeruginosa isolates generated in a morbidostat device.
    Javed M; Ueltzhoeffer V; Heinrich M; Siegrist HJ; Wildermuth R; Lorenz FR; Neher RA; Willmann M
    J Antimicrob Chemother; 2018 Dec; 73(12):3368-3374. PubMed ID: 30137346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Multiplex Fluidic Chip for Rapid Phenotypic Antibiotic Susceptibility Testing.
    Wistrand-Yuen P; Malmberg C; Fatsis-Kavalopoulos N; Lübke M; Tängdén T; Kreuger J
    mBio; 2020 Feb; 11(1):. PubMed ID: 32098819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid and Consistent Evolution of Colistin Resistance in Extensively Drug-Resistant Pseudomonas aeruginosa during Morbidostat Culture.
    Dößelmann B; Willmann M; Steglich M; Bunk B; Nübel U; Peter S; Neher RA
    Antimicrob Agents Chemother; 2017 Sep; 61(9):. PubMed ID: 28630206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of antibiotic substances by actinomycetes.
    Waksman SA; Schatz A; Reynolds DM
    Ann N Y Acad Sci; 2010 Dec; 1213():112-24. PubMed ID: 21175680
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.