BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 23429995)

  • 1. Intracellular distribution of nontargeted quantum dots after natural uptake and microinjection.
    Damalakiene L; Karabanovas V; Bagdonas S; Valius M; Rotomskis R
    Int J Nanomedicine; 2013; 8():555-68. PubMed ID: 23429995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suppression of a Specific Intracellular Uptake Pathway by a Saturating Accumulation of Quantum Dots.
    Damalakiene L; Karabanovas V; Bagdonas S; Pupelis L; Valius M; Rotomskis R
    J Biomed Nanotechnol; 2015 May; 11(5):841-53. PubMed ID: 26349396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The cytoplasmic escape and nuclear accumulation of endocytosed and microinjected HPMA copolymers and a basic kinetic study in Hep G2 cells.
    Jensen KD; Kopecková P; Bridge JH; Kopecek J
    AAPS PharmSci; 2001; 3(4):E32. PubMed ID: 12049495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uptake and distribution of carboxylated quantum dots in human mesenchymal stem cells: cell growing density matters.
    Kundrotas G; Karabanovas V; Pleckaitis M; Juraleviciute M; Steponkiene S; Gudleviciene Z; Rotomskis R
    J Nanobiotechnology; 2019 Mar; 17(1):39. PubMed ID: 30866960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeted nuclear delivery using peptide-coated quantum dots.
    Kuo CW; Chueh DY; Singh N; Chien FC; Chen P
    Bioconjug Chem; 2011 Jun; 22(6):1073-80. PubMed ID: 21528926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluid phase endocytic uptake of artificial nano-spheres and fluorescent quantum dots by sycamore cultured cells: evidence for the distribution of solutes to different intracellular compartments.
    Etxeberria E; Gonzalez P; Baroja-Fernandez E; Romero JP
    Plant Signal Behav; 2006 Jul; 1(4):196-200. PubMed ID: 19521485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellular uptake and subcellular localization of highly luminescent silica-coated CdSe quantum dots--in vitro and in vivo.
    Vibin M; Vinayakan R; John A; Rejiya CS; Raji V; Abraham A
    J Colloid Interface Sci; 2011 May; 357(2):366-71. PubMed ID: 21396653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorinated CdSe/ZnS quantum dots: Interactions with cell membrane.
    Argudo PG; Martín-Romero MT; Camacho L; Carril M; Carrillo-Carrión C; Giner-Casares JJ
    Colloids Surf B Biointerfaces; 2019 Jan; 173():148-154. PubMed ID: 30286431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying the cellular uptake of semiconductor quantum dot nanoparticles by analytical electron microscopy.
    Hondow N; Brown MR; Starborg T; Monteith AG; Brydson R; Summers HD; Rees P; Brown A
    J Microsc; 2016 Feb; 261(2):167-76. PubMed ID: 25762522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uptake, retention and internalization of quantum dots in Daphnia is influenced by particle surface functionalization.
    Feswick A; Griffitt RJ; Siebein K; Barber DS
    Aquat Toxicol; 2013 Apr; 130-131():210-8. PubMed ID: 23419536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitigating the toxic effects of CdSe quantum dots towards freshwater alga Scenedesmus obliquus: Role of eco-corona.
    Chakraborty D; Ethiraj KR; Chandrasekaran N; Mukherjee A
    Environ Pollut; 2021 Feb; 270():116049. PubMed ID: 33213955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Triple-Labeling of Polymer-Coated Quantum Dots and Adsorbed Proteins for Tracing their Fate in Cell Cultures.
    Carrillo-Carrion C; Bocanegra AI; Arnaiz B; Feliu N; Zhu D; Parak WJ
    ACS Nano; 2019 Apr; 13(4):4631-4639. PubMed ID: 30875468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellular uptake, elimination and toxicity of CdSe/ZnS quantum dots in HepG2 cells.
    Peng L; He M; Chen B; Wu Q; Zhang Z; Pang D; Zhu Y; Hu B
    Biomaterials; 2013 Dec; 34(37):9545-58. PubMed ID: 24011712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport and release of colloidal 3-mercaptopropionic acid-coated CdSe-CdS/ZnS core-multishell quantum dots in human umbilical vein endothelial cells.
    Fontana JM; Yin H; Chen Y; Florez R; Brismar H; Fu Y
    Int J Nanomedicine; 2017; 12():8615-8629. PubMed ID: 29270011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy transfer between CdSe/ZnS core/shell quantum dots and fluorescent proteins.
    Hering VR; Gibson G; Schumacher RI; Faljoni-Alario A; Politi MJ
    Bioconjug Chem; 2007; 18(6):1705-8. PubMed ID: 17900163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Translocation of PEGylated quantum dots across rat alveolar epithelial cell monolayers.
    Fazlollahi F; Sipos A; Kim YH; Hamm-Alvarez SF; Borok Z; Kim KJ; Crandall ED
    Int J Nanomedicine; 2011; 6():2849-57. PubMed ID: 22131830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface properties of quantum dots define their cellular endocytic routes, mitogenic stimulation and suppression of cell migration.
    Karabanovas V; Zitkus Z; Kuciauskas D; Rotomskis R; Valius M
    J Biomed Nanotechnol; 2014 May; 10(5):775-86. PubMed ID: 24734530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-specific cellular uptake of surface-functionalized quantum dots.
    Kelf TA; Sreenivasan VK; Sun J; Kim EJ; Goldys EM; Zvyagin AV
    Nanotechnology; 2010 Jul; 21(28):285105. PubMed ID: 20585157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endocytosis of gastrin in cancer cells expressing gastrin/CCK-B receptor.
    Tarasova NI; Wank SA; Hudson EA; Romanov VI; Czerwinski G; Resau JH; Michejda CJ
    Cell Tissue Res; 1997 Feb; 287(2):325-33. PubMed ID: 8995203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cancer-cell-phenotype-dependent differential intracellular trafficking of unconjugated quantum dots.
    Barua S; Rege K
    Small; 2009 Mar; 5(3):370-6. PubMed ID: 19089841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.