BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 23430251)

  • 1. Large scale structural rearrangement of a serine hydrolase from Francisella tularensis facilitates catalysis.
    Filippova EV; Weston LA; Kuhn ML; Geissler B; Gehring AM; Armoush N; Adkins CT; Minasov G; Dubrovska I; Shuvalova L; Winsor JR; Lavis LD; Satchell KJ; Becker DP; Anderson WF; Johnson RJ
    J Biol Chem; 2013 Apr; 288(15):10522-35. PubMed ID: 23430251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A conserved but structurally divergent loop in acyl protein thioesterase 1 regulates its catalytic activity, ligand binding, and folded stability.
    Harris WT; Altieri I; Gieck I; Johnson RJ
    Proteins; 2024 Jun; 92(6):693-704. PubMed ID: 38179877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A dynamic loop provides dual control over the catalytic and membrane binding activity of a bacterial serine hydrolase.
    Smith MA; Phillips WK; Rabin PL; Johnson RJ
    Biochim Biophys Acta Proteins Proteom; 2018 Sep; 1866(9):925-932. PubMed ID: 29857162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3-Deoxy-D-manno-octulosonic acid (Kdo) hydrolase identified in Francisella tularensis, Helicobacter pylori, and Legionella pneumophila.
    Chalabaev S; Kim TH; Ross R; Derian A; Kasper DL
    J Biol Chem; 2010 Nov; 285(45):34330-6. PubMed ID: 20801884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural insights into GDP-mediated regulation of a bacterial acyl-CoA thioesterase.
    Khandokar YB; Srivastava P; Cowieson N; Sarker S; Aragao D; Das S; Smith KM; Raidal SR; Forwood JK
    J Biol Chem; 2017 Dec; 292(50):20461-20471. PubMed ID: 28972175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of aspartate β-semialdehyde dehydrogenase from Francisella tularensis.
    Mank NJ; Pote S; Majorek KA; Arnette AK; Klapper VG; Hurlburt BK; Chruszcz M
    Acta Crystallogr F Struct Biol Commun; 2018 Jan; 74(Pt 1):14-22. PubMed ID: 29372903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and Functional Characterization of the PaaI Thioesterase from Streptococcus pneumoniae Reveals a Dual Specificity for Phenylacetyl-CoA and Medium-chain Fatty Acyl-CoAs and a Novel CoA-induced Fit Mechanism.
    Khandokar YB; Srivastava P; Sarker S; Swarbrick CMD; Aragao D; Cowieson N; Forwood JK
    J Biol Chem; 2016 Jan; 291(4):1866-1876. PubMed ID: 26538563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of the human acyl protein thioesterase I from a single X-ray data set to 1.5 A.
    Devedjiev Y; Dauter Z; Kuznetsov SR; Jones TL; Derewenda ZS
    Structure; 2000 Nov; 8(11):1137-46. PubMed ID: 11080636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The unusual substrate specificity of a virulence associated serine hydrolase from the highly toxic bacterium,
    Farberg AM; Hart WK; Johnson RJ
    Biochem Biophys Rep; 2016 Sep; 7():415-422. PubMed ID: 28955933
    [No Abstract]   [Full Text] [Related]  

  • 10. Backbone dynamics of Escherichia coli thioesterase/protease I: evidence of a flexible active-site environment for a serine protease.
    Huang YT; Liaw YC; Gorbatyuk VY; Huang TH
    J Mol Biol; 2001 Apr; 307(4):1075-90. PubMed ID: 11286557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural enzymology and inhibition of the bi-functional folate pathway enzyme HPPK-DHPS from the biowarfare agent Francisella tularensis.
    Shaw GX; Li Y; Shi G; Wu Y; Cherry S; Needle D; Zhang D; Tropea JE; Waugh DS; Yan H; Ji X
    FEBS J; 2014 Sep; 281(18):4123-37. PubMed ID: 24975935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tryptophan fluorescence of the lux-specific Vibrio harveyi acyl-ACP thioesterase and its tryptophan mutants: structural properties and ligand-induced conformational change.
    Li J; Szittner R; Meighen EA
    Biochemistry; 1998 Nov; 37(46):16130-8. PubMed ID: 9819205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and function of REP34 implicates carboxypeptidase activity in Francisella tularensis host cell invasion.
    Feld GK; El-Etr S; Corzett MH; Hunter MS; Belhocine K; Monack DM; Frank M; Segelke BW; Rasley A
    J Biol Chem; 2014 Oct; 289(44):30668-30679. PubMed ID: 25231992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural analysis of the dual-function thioesterase SAV606 unravels the mechanism of Michael addition of glycine to an α,β-unsaturated thioester.
    Chisuga T; Miyanaga A; Kudo F; Eguchi T
    J Biol Chem; 2017 Jun; 292(26):10926-10937. PubMed ID: 28522606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical and structural characterization of polyphosphate kinase 2 from the intracellular pathogen Francisella tularensis.
    Batten LE; Parnell AE; Wells NJ; Murch AL; Oyston PC; Roach PL
    Biosci Rep; 2015 Nov; 36(1):e00294. PubMed ID: 26582818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of AcpA phosphatase activity with ascorbate attenuates Francisella tularensis intramacrophage survival.
    McRae S; Pagliai FA; Mohapatra NP; Gener A; Mahmou AS; Gunn JS; Lorca GL; Gonzalez CF
    J Biol Chem; 2010 Feb; 285(8):5171-7. PubMed ID: 20028980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structures of APRT from Francisella tularensis - an N-H···N hydrogen bond imparts adenine specificity in adenine phosporibosyltransferases.
    Pavithra GC; Ramagopal UA
    FEBS J; 2018 Jun; 285(12):2306-2318. PubMed ID: 29694705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3-substituted indole inhibitors against Francisella tularensis FabI identified by structure-based virtual screening.
    Hu X; Compton JR; Abdulhameed MD; Marchand CL; Robertson KL; Leary DH; Jadhav A; Hershfield JR; Wallqvist A; Friedlander AM; Legler PM
    J Med Chem; 2013 Jul; 56(13):5275-87. PubMed ID: 23815100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of Francisella tularensis peptidyl-tRNA hydrolase.
    Clarke TE; Romanov V; Lam R; Gothe SA; Peddi SR; Razumova EB; Lipman RS; Branstrom AA; Chirgadze NY
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2011 Apr; 67(Pt 4):446-9. PubMed ID: 21505237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutational analysis of a type II thioesterase associated with nonribosomal peptide synthesis.
    Linne U; Schwarzer D; Schroeder GN; Marahiel MA
    Eur J Biochem; 2004 Apr; 271(8):1536-45. PubMed ID: 15066179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.