These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 2343063)
21. The presence of a human UV filter within the lens represents an oxidative stress. Berry Y; Truscott RJ Exp Eye Res; 2001 Apr; 72(4):411-21. PubMed ID: 11273669 [TBL] [Abstract][Full Text] [Related]
22. Identification of Kynoxazine, a Novel Fluorescent Product of the Reaction between 3-Hydroxykynurenine and Erythrulose in the Human Lens, and Its Role in Protein Modification. Rakete S; Nagaraj RH J Biol Chem; 2016 Apr; 291(18):9596-609. PubMed ID: 26941078 [TBL] [Abstract][Full Text] [Related]
24. Truncation, cross-linking and interaction of crystallins and intermediate filament proteins in the aging human lens. Su SP; McArthur JD; Truscott RJ; Aquilina JA Biochim Biophys Acta; 2011 May; 1814(5):647-56. PubMed ID: 21447408 [TBL] [Abstract][Full Text] [Related]
25. 3-Hydroxykynurenine and 3-hydroxyanthranilic acid may act as endogenous antioxidants in the eye lens. Luthra M; Balasubramanian D Exp Eye Res; 1992 Oct; 55(4):641-3. PubMed ID: 1483510 [No Abstract] [Full Text] [Related]
26. Oxidized amino acids in lens protein with age. Measurement of o-tyrosine and dityrosine in the aging human lens. Wells-Knecht MC; Huggins TG; Dyer DG; Thorpe SR; Baynes JW J Biol Chem; 1993 Jun; 268(17):12348-52. PubMed ID: 8509374 [TBL] [Abstract][Full Text] [Related]
27. Fluorescence studies of lens epithelial cells and their constituents. Atherton SJ; Lambert C; Schultz J; Williams N; Zigman S Photochem Photobiol; 1999 Nov; 70(5):823-8. PubMed ID: 10568176 [TBL] [Abstract][Full Text] [Related]
28. UV filter compounds in human lenses: the origin of 4-(2-amino-3-hydroxyphenyl)-4-oxobutanoic acid O-beta-D-glucoside. Bova LM; Wood AM; Jamie JF; Truscott RJ Invest Ophthalmol Vis Sci; 1999 Dec; 40(13):3237-44. PubMed ID: 10586948 [TBL] [Abstract][Full Text] [Related]
29. Quantitative measurement of young human eye lens crystallins by direct injection Fourier transform ion cyclotron resonance mass spectrometry. Robinson NE; Lampi KJ; Speir JP; Kruppa G; Easterling M; Robinson AB Mol Vis; 2006 Jun; 12():704-11. PubMed ID: 16807530 [TBL] [Abstract][Full Text] [Related]
30. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses. Harrington V; Srivastava OP; Kirk M Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670 [TBL] [Abstract][Full Text] [Related]
31. Argpyrimidine, a blue fluorophore in human lens proteins: high levels in brunescent cataractous lenses. Padayatti PS; Ng AS; Uchida K; Glomb MA; Nagaraj RH Invest Ophthalmol Vis Sci; 2001 May; 42(6):1299-304. PubMed ID: 11328743 [TBL] [Abstract][Full Text] [Related]
32. Raman spectroscopic measurement of total sulfhydryl in intact lens as affected by aging and ultraviolet irradiation. Deuterium exchange as a probe for accessible sulfhydryl in living tissue. East EJ; Chang RC; Yu NT; Kuck JF J Biol Chem; 1978 Mar; 253(5):1436-41. PubMed ID: 627547 [No Abstract] [Full Text] [Related]
33. Biochemical features of the grey squirrel lens. Zigman S; Paxhia T; Waldron W Invest Ophthalmol Vis Sci; 1985 Aug; 26(8):1075-82. PubMed ID: 4019099 [TBL] [Abstract][Full Text] [Related]
34. Photochemically modified alpha-crystallin: a model system for aging in the primate lens. Ervin LA; Dillon J; Gaillard ER Photochem Photobiol; 2001 Jun; 73(6):685-91. PubMed ID: 11421076 [TBL] [Abstract][Full Text] [Related]
35. Non-tryptophan fluorescence of crystallins from normal and cataractous human lenses. Bessems GJ; Keizer E; Wollensak J; Hoenders HJ Invest Ophthalmol Vis Sci; 1987 Jul; 28(7):1157-63. PubMed ID: 3596993 [TBL] [Abstract][Full Text] [Related]
36. Evidence that alpha-crystallin prevents non-specific protein aggregation in the intact eye lens. Rao PV; Huang QL; Horwitz J; Zigler JS Biochim Biophys Acta; 1995 Dec; 1245(3):439-47. PubMed ID: 8541324 [TBL] [Abstract][Full Text] [Related]
37. Tryptophan metabolites from young human lenses and the photooxidation of ascorbic acid by UVA light. Ortwerth BJ; Bhattacharyya J; Shipova E Invest Ophthalmol Vis Sci; 2009 Jul; 50(7):3311-9. PubMed ID: 19264899 [TBL] [Abstract][Full Text] [Related]
38. Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: possible role of advanced glycation end products. Saxena P; Saxena AK; Cui XL; Obrenovich M; Gudipaty K; Monnier VM Invest Ophthalmol Vis Sci; 2000 May; 41(6):1473-81. PubMed ID: 10798665 [TBL] [Abstract][Full Text] [Related]
39. Racemization of tyrosine in the insoluble protein fraction of brunescent aging human lenses. Luthra M; Ranganathan D; Ranganathan S; Balasubramanian D J Biol Chem; 1994 Sep; 269(36):22678-82. PubMed ID: 8077220 [TBL] [Abstract][Full Text] [Related]
40. Distribution of two metabolically related fluorophors in human lens measured by laser microprobe. Yu NT; Barron BC; Kuck JF Exp Eye Res; 1989 Aug; 49(2):189-94. PubMed ID: 2767167 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]