These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 23431151)

  • 21. Inertial forces affect fluid front displacement dynamics in a pore-throat network model.
    Moebius F; Or D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):023019. PubMed ID: 25215832
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Beyond Darcy's law: The role of phase topology and ganglion dynamics for two-fluid flow.
    Armstrong RT; McClure JE; Berrill MA; Rücker M; Schlüter S; Berg S
    Phys Rev E; 2016 Oct; 94(4-1):043113. PubMed ID: 27841482
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamics of fluid displacement in mixed-wet porous media.
    Scanziani A; Lin Q; Alhosani A; Blunt MJ; Bijeljic B
    Proc Math Phys Eng Sci; 2020 Aug; 476(2240):20200040. PubMed ID: 32922149
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of sampling patterns for high-resolution compressed sensing MRI of porous materials: 'learning' from X-ray microcomputed tomography data.
    Karlsons K; DE Kort DW; Sederman AJ; Mantle MD; DE Jong H; Appel M; Gladden LF
    J Microsc; 2019 Nov; 276(2):63-81. PubMed ID: 31587277
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimizing pink-beam fast X-ray microtomography for multiphase flow in 3D porous media.
    Meisenheimer DE; Rivers ML; Wildenschild D
    J Microsc; 2020 Feb; 277(2):100-106. PubMed ID: 32022271
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 4D microvelocimetry reveals multiphase flow field perturbations in porous media.
    Bultreys T; Ellman S; Schlepütz CM; Boone MN; Pakkaner GK; Wang S; Borji M; Van Offenwert S; Moazami Goudarzi N; Goethals W; Winardhi CW; Cnudde V
    Proc Natl Acad Sci U S A; 2024 Mar; 121(12):e2316723121. PubMed ID: 38478686
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A review of non-invasive imaging methods and applications in contaminant hydrogeology research.
    Werth CJ; Zhang C; Brusseau ML; Oostrom M; Baumann T
    J Contam Hydrol; 2010 Apr; 113(1-4):1-24. PubMed ID: 20163885
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pore-Scale Geochemical Reactivity Associated with CO
    Noiriel C; Daval D
    Acc Chem Res; 2017 Apr; 50(4):759-768. PubMed ID: 28362082
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pore-scale effects during the transition from capillary- to viscosity-dominated flow dynamics within microfluidic porous-like domains.
    Yiotis A; Karadimitriou NK; Zarikos I; Steeb H
    Sci Rep; 2021 Feb; 11(1):3891. PubMed ID: 33594146
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Imaging biofilm in porous media using X-ray computed microtomography.
    Davit Y; Iltis G; Debenest G; Veran-Tissoires S; Wildenschild D; Gerino M; Quintard M
    J Microsc; 2011 Apr; 242(1):15-25. PubMed ID: 21118226
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A level set method for determining critical curvatures for drainage and imbibition.
    Prodanović M; Bryant SL
    J Colloid Interface Sci; 2006 Dec; 304(2):442-58. PubMed ID: 17027812
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 3D pore-scale characterization of colloid aggregation and retention by confocal microscopy: Effects of fluid structure and ionic strength.
    Wu T; Chen Y; Yang Z
    Sci Total Environ; 2024 Mar; 917():170349. PubMed ID: 38280576
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Direct characterization of solute transport in unsaturated porous media using fast X-ray synchrotron microtomography.
    Hasan S; Niasar V; Karadimitriou NK; Godinho JRA; Vo NT; An S; Rabbani A; Steeb H
    Proc Natl Acad Sci U S A; 2020 Sep; 117(38):23443-23449. PubMed ID: 32900944
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prediction of imbibition in unconsolidated granular materials.
    Gladkikh M; Bryant S
    J Colloid Interface Sci; 2005 Aug; 288(2):526-39. PubMed ID: 15927623
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Using energy balance to determine pore-scale wettability.
    Akai T; Lin Q; Bijeljic B; Blunt MJ
    J Colloid Interface Sci; 2020 Sep; 576():486-495. PubMed ID: 32502883
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Four-dimensional imaging and free-energy analysis of sudden pore-filling events in wicking of yarns.
    Fischer R; Schlepütz CM; Hegemann D; Rossi RM; Derome D; Carmeliet J
    Phys Rev E; 2021 May; 103(5-1):053101. PubMed ID: 34134200
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Imaging of compositional gradients during in situ emulsification using X-ray micro-tomography.
    Unsal E; Rücker M; Berg S; Bartels WB; Bonnin A
    J Colloid Interface Sci; 2019 Aug; 550():159-169. PubMed ID: 31071522
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Three-dimensional diffusion of non-sorbing species in porous sandstone: computer simulation based on X-ray microtomography using synchrotron radiation.
    Nakashima Y; Nakano T; Nakamura K; Uesugi K; Tsuchiyama A; Ikeda S
    J Contam Hydrol; 2004 Oct; 74(1-4):253-64. PubMed ID: 15358495
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intermittent fluid connectivity during two-phase flow in a heterogeneous carbonate rock.
    Spurin C; Bultreys T; Bijeljic B; Blunt MJ; Krevor S
    Phys Rev E; 2019 Oct; 100(4-1):043103. PubMed ID: 31770929
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mercury Penetration and Snap-off in Lenticular Pores.
    Tsakiroglou CD; Kolonis GB; Roumeliotis TC; Payatakes AC
    J Colloid Interface Sci; 1997 Sep; 193(2):259-72. PubMed ID: 9344527
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.