BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 23431182)

  • 61. Identification of post-mitotic oligodendrocytes incapable of remyelination within the demyelinated adult spinal cord.
    Keirstead HS; Blakemore WF
    J Neuropathol Exp Neurol; 1997 Nov; 56(11):1191-201. PubMed ID: 9370229
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Microenvironmental regulation of oligodendrocyte replacement and remyelination in spinal cord injury.
    Alizadeh A; Karimi-Abdolrezaee S
    J Physiol; 2016 Jul; 594(13):3539-52. PubMed ID: 26857216
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Histological repair of damaged spinal cord tissue from chronic contusion injury of rat: a LM observation.
    Zhang SX; Huang F; Gates M; White J; Holmberg EG
    Histol Histopathol; 2011 Jan; 26(1):45-58. PubMed ID: 21117026
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Myelin-based inhibitors of oligodendrocyte myelination: clues from axonal growth and regeneration.
    Mei F; Christin Chong SY; Chan JR
    Neurosci Bull; 2013 Apr; 29(2):177-88. PubMed ID: 23516141
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The biology of CNS remyelination: the key to therapeutic advances.
    Franklin RJ; Kotter MR
    J Neurol; 2008 Mar; 255 Suppl 1():19-25. PubMed ID: 18317673
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Forced Remyelination Promotes Axon Regeneration in a Rat Model of Spinal Cord Injury.
    Zawadzka M; Yeghiazaryan M; Niedziółka S; Miazga K; Kwaśniewska A; Bekisz M; Sławińska U
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613945
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Chronic nerve compression induces local demyelination and remyelination in a rat model of carpal tunnel syndrome.
    Gupta R; Rowshan K; Chao T; Mozaffar T; Steward O
    Exp Neurol; 2004 Jun; 187(2):500-8. PubMed ID: 15144876
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Bone marrow stromal cell transplantation for treatment of sub-acute spinal cord injury in the rat.
    Ide C; Nakai Y; Nakano N; Seo TB; Yamada Y; Endo K; Noda T; Saito F; Suzuki Y; Fukushima M; Nakatani T
    Brain Res; 2010 May; 1332():32-47. PubMed ID: 20307513
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Bone marrow mononuclear cells migrate to the demyelinated sciatic nerve and transdifferentiate into Schwann cells after nerve injury: attempt at a peripheral nervous system intrinsic repair mechanism.
    Usach V; Goitia B; Lavalle L; Martinez Vivot R; Setton-Avruj P
    J Neurosci Res; 2011 Aug; 89(8):1203-17. PubMed ID: 21538460
    [TBL] [Abstract][Full Text] [Related]  

  • 70. [Myelination, demyelination and re-myelination in the central nervous system].
    Graça DL
    Arq Neuropsiquiatr; 1988 Sep; 46(3):292-7. PubMed ID: 3066310
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Stem cells, progenitors and myelin repair.
    Zhao C; Fancy SP; Magy L; Urwin JE; Franklin RJ
    J Anat; 2005 Sep; 207(3):251-8. PubMed ID: 16185249
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Schwann cells are removed from the spinal cord after effecting recovery from paraplegia.
    Jasmin L; Janni G; Moallem TM; Lappi DA; Ohara PT
    J Neurosci; 2000 Dec; 20(24):9215-23. PubMed ID: 11124999
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Neuroprotection by central nervous system remyelination: Molecular, cellular, and functional considerations.
    Verden D; Macklin WB
    J Neurosci Res; 2016 Dec; 94(12):1411-1420. PubMed ID: 27618492
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Impaired remyelination and depletion of oligodendrocyte progenitors does not occur following repeated episodes of focal demyelination in the rat central nervous system.
    Penderis J; Shields SA; Franklin RJ
    Brain; 2003 Jun; 126(Pt 6):1382-91. PubMed ID: 12764059
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Graded Elevation of c-Jun in Schwann Cells
    Fazal SV; Gomez-Sanchez JA; Wagstaff LJ; Musner N; Otto G; Janz M; Mirsky R; Jessen KR
    J Neurosci; 2017 Dec; 37(50):12297-12313. PubMed ID: 29109239
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Paving the axonal highway: from stem cells to myelin repair.
    Peru RL; Mandrycky N; Nait-Oumesmar B; Lu QR
    Stem Cell Rev; 2008 Dec; 4(4):304-18. PubMed ID: 18759012
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A quantitative morphometric analysis of rat spinal cord remyelination following transplantation of allogenic Schwann cells.
    Lankford KL; Imaizumi T; Honmou O; Kocsis JD
    J Comp Neurol; 2002 Feb; 443(3):259-74. PubMed ID: 11807836
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Boundary cap cells are highly competitive for CNS remyelination: fast migration and efficient differentiation in PNS and CNS myelin-forming cells.
    Zujovic V; Thibaud J; Bachelin C; Vidal M; Coulpier F; Charnay P; Topilko P; Baron-Van Evercooren A
    Stem Cells; 2010 Mar; 28(3):470-9. PubMed ID: 20039366
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Myelin-derived ephrinB3 restricts axonal regeneration and recovery after adult CNS injury.
    Duffy P; Wang X; Siegel CS; Tu N; Henkemeyer M; Cafferty WB; Strittmatter SM
    Proc Natl Acad Sci U S A; 2012 Mar; 109(13):5063-8. PubMed ID: 22411787
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A novel growth-promoting pathway formed by GDNF-overexpressing Schwann cells promotes propriospinal axonal regeneration, synapse formation, and partial recovery of function after spinal cord injury.
    Deng LX; Deng P; Ruan Y; Xu ZC; Liu NK; Wen X; Smith GM; Xu XM
    J Neurosci; 2013 Mar; 33(13):5655-67. PubMed ID: 23536080
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.