These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Inhibiting the onset of the three-photon destructive interference in ultraslow propagation-enhanced four-wave mixing with dual induced transparency. Deng L; Payne MG Phys Rev Lett; 2003 Dec; 91(24):243902. PubMed ID: 14683121 [TBL] [Abstract][Full Text] [Related]
5. Analytic expressions for the constitutive parameters of magnetoelectric metamaterials. Smith DR Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 2):036605. PubMed ID: 20365894 [TBL] [Abstract][Full Text] [Related]
6. Electrifying photonic metamaterials for tunable nonlinear optics. Kang L; Cui Y; Lan S; Rodrigues SP; Brongersma ML; Cai W Nat Commun; 2014 Aug; 5():4680. PubMed ID: 25109813 [TBL] [Abstract][Full Text] [Related]
7. Enhanced optical phase conjugation in nonlinear metamaterials. Kim K Opt Express; 2014 Dec; 22 Suppl 7():A1744-52. PubMed ID: 25607488 [TBL] [Abstract][Full Text] [Related]
8. Nonlinear absorption due to linear loss and magnetic permeability in metamaterials. Xiang Y; Dai X; Wen S; Guo J Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066604. PubMed ID: 23005234 [TBL] [Abstract][Full Text] [Related]
9. Nonlinear responses in optical metamaterials: theory and experiment. Tang S; Cho DJ; Xu H; Wu W; Shen YR; Zhou L Opt Express; 2011 Sep; 19(19):18283-93. PubMed ID: 21935195 [TBL] [Abstract][Full Text] [Related]
10. Switchable unidirectional waves on mono- and diatomic metamaterials. Yan J; Radkovskaya A; Solymar L; Stevens C; Shamonina E Sci Rep; 2022 Oct; 12(1):16845. PubMed ID: 36207465 [TBL] [Abstract][Full Text] [Related]
12. Compensating substrate-induced bianisotropy in optical metamaterials using ultrathin superstrate coatings. Jiang ZH; Werner DH Opt Express; 2013 Mar; 21(5):5594-605. PubMed ID: 23482132 [TBL] [Abstract][Full Text] [Related]
13. Four-wave mixing, quantum control, and compensating losses in doped negative-index photonic metamaterials. Popov AK; Myslivets SA; George TF; Shalaev VM Opt Lett; 2007 Oct; 32(20):3044-6. PubMed ID: 17938694 [TBL] [Abstract][Full Text] [Related]
14. Nonlinear excitation of surface plasmon polaritons by four-wave mixing. Palomba S; Novotny L Phys Rev Lett; 2008 Aug; 101(5):056802. PubMed ID: 18764416 [TBL] [Abstract][Full Text] [Related]
15. Photonic millimeter-wave frequency multiplication based on cascaded four-wave mixing and polarization pulling. Vidal B Opt Lett; 2012 Dec; 37(24):5055-7. PubMed ID: 23258003 [TBL] [Abstract][Full Text] [Related]
16. Electronic Metamaterials with Tunable Second-order Optical Nonlinearities. Lin HH; Vallini F; Yang MH; Sharma R; Puckett MW; Montoya S; Wurm CD; Fullerton EE; Fainman Y Sci Rep; 2017 Aug; 7(1):9983. PubMed ID: 28855738 [TBL] [Abstract][Full Text] [Related]
17. Controlling the second harmonic in a phase-matched negative-index metamaterial. Rose A; Huang D; Smith DR Phys Rev Lett; 2011 Aug; 107(6):063902. PubMed ID: 21902325 [TBL] [Abstract][Full Text] [Related]
18. Hong-Ou-Mandel interference mediated by the magnetic plasmon waves in a three-dimensional optical metamaterial. Wang SM; Mu SY; Zhu C; Gong YX; Xu P; Liu H; Li T; Zhu SN; Zhang X Opt Express; 2012 Feb; 20(5):5213-8. PubMed ID: 22418327 [TBL] [Abstract][Full Text] [Related]
19. Controllable microwave three-wave mixing via a single three-level superconducting quantum circuit. Liu YX; Sun HC; Peng ZH; Miranowicz A; Tsai JS; Nori F Sci Rep; 2014 Dec; 4():7289. PubMed ID: 25487352 [TBL] [Abstract][Full Text] [Related]
20. Tailor the surface-wave properties of a plasmonic metal by a metamaterial capping. Song Z; Li X; Hao J; Xiao S; Qiu M; He Q; Ma S; Zhou L Opt Express; 2013 Jul; 21(15):18178-87. PubMed ID: 23938688 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]