BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 23432671)

  • 1. Strategies to direct angiogenesis within scaffolds for bone tissue engineering.
    Harris GM; Rutledge K; Cheng Q; Blanchette J; Jabbarzadeh E
    Curr Pharm Des; 2013; 19(19):3456-65. PubMed ID: 23432671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vascularization of Natural and Synthetic Bone Scaffolds.
    Liu X; Jakus AE; Kural M; Qian H; Engler A; Ghaedi M; Shah R; Steinbacher DM; Niklason LE
    Cell Transplant; 2018 Aug; 27(8):1269-1280. PubMed ID: 30008231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering Pre-vascularized Scaffolds for Bone Regeneration.
    Barabaschi GD; Manoharan V; Li Q; Bertassoni LE
    Adv Exp Med Biol; 2015; 881():79-94. PubMed ID: 26545745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering clinically relevant volumes of vascularized bone.
    Roux BM; Cheng MH; Brey EM
    J Cell Mol Med; 2015 May; 19(5):903-14. PubMed ID: 25877690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Progress on strategies to promote vascularization in bone tissue engineering].
    Chen K; Zhang C; Wang L; Mao YY; Lu JX; Chen L
    Zhongguo Gu Shang; 2015 Apr; 28(4):383-8. PubMed ID: 26072627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tissue-engineered vascularized bone grafts: basic science and clinical relevance to trauma and reconstructive microsurgery.
    Johnson EO; Troupis T; Soucacos PN
    Microsurgery; 2011 Mar; 31(3):176-82. PubMed ID: 21360585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative study on the role of gelatin, chitosan and their combination as tissue engineered scaffolds on healing and regeneration of critical sized bone defects: an in vivo study.
    Oryan A; Alidadi S; Bigham-Sadegh A; Moshiri A
    J Mater Sci Mater Med; 2016 Oct; 27(10):155. PubMed ID: 27590825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Piezoelectric materials as stimulatory biomedical materials and scaffolds for bone repair.
    Tandon B; Blaker JJ; Cartmell SH
    Acta Biomater; 2018 Jun; 73():1-20. PubMed ID: 29673838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microcomputed tomography characterization of neovascularization in bone tissue engineering applications.
    Young S; Kretlow JD; Nguyen C; Bashoura AG; Baggett LS; Jansen JA; Wong M; Mikos AG
    Tissue Eng Part B Rev; 2008 Sep; 14(3):295-306. PubMed ID: 18657028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functionalized cell-free scaffolds for bone defect repair inspired by self-healing of bone fractures: A review and new perspectives.
    Li L; Lu H; Zhao Y; Luo J; Yang L; Liu W; He Q
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():1241-1251. PubMed ID: 30813005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Key components of engineering vascularized 3-dimensional bioprinted bone constructs.
    Shahabipour F; Ashammakhi N; Oskuee RK; Bonakdar S; Hoffman T; Shokrgozar MA; Khademhosseini A
    Transl Res; 2020 Feb; 216():57-76. PubMed ID: 31526771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating the Vascularization of Tissue-Engineered Bone Constructs Using Dental Pulp Cells and 45S5 Bioglass® Scaffolds.
    El-Gendy R; Kirkham J; Newby PJ; Mohanram Y; Boccaccini AR; Yang XB
    Tissue Eng Part A; 2015 Jul; 21(13-14):2034-43. PubMed ID: 25923923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tissue engineered bone grafts: biological requirements, tissue culture and clinical relevance.
    Fröhlich M; Grayson WL; Wan LQ; Marolt D; Drobnic M; Vunjak-Novakovic G
    Curr Stem Cell Res Ther; 2008 Dec; 3(4):254-64. PubMed ID: 19075755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Chemistry on Osteogenesis and Angiogenesis Towards Bone Tissue Engineering Using 3D Printed Scaffolds.
    Bose S; Tarafder S; Bandyopadhyay A
    Ann Biomed Eng; 2017 Jan; 45(1):261-272. PubMed ID: 27287311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Bone tissue engineering for bone defect therapy].
    Boos AM; Arkudas A; Kneser U; Horch RE; Beier JP
    Handchir Mikrochir Plast Chir; 2010 Dec; 42(6):360-8. PubMed ID: 20821364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osteogenesis and angiogenesis: the potential for engineering bone.
    Kanczler JM; Oreffo RO
    Eur Cell Mater; 2008 May; 15():100-14. PubMed ID: 18454418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vascularization in bone tissue engineering: physiology, current strategies, major hurdles and future challenges.
    Santos MI; Reis RL
    Macromol Biosci; 2010 Jan; 10(1):12-27. PubMed ID: 19688722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bone tissue engineering in osteoporosis.
    Jakob F; Ebert R; Ignatius A; Matsushita T; Watanabe Y; Groll J; Walles H
    Maturitas; 2013 Jun; 75(2):118-24. PubMed ID: 23562167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomimetic Approaches for Bone Tissue Engineering.
    Ng J; Spiller K; Bernhard J; Vunjak-Novakovic G
    Tissue Eng Part B Rev; 2017 Oct; 23(5):480-493. PubMed ID: 27912680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a bioactive porous collagen/β-tricalcium phosphate bone graft assisting rapid vascularization for bone tissue engineering applications.
    Baheiraei N; Nourani MR; Mortazavi SMJ; Movahedin M; Eyni H; Bagheri F; Norahan MH
    J Biomed Mater Res A; 2018 Jan; 106(1):73-85. PubMed ID: 28879686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.