BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 23432671)

  • 21. PHBV wet-spun scaffold coated with ELR-REDV improves vascularization for bone tissue engineering.
    Alagoz AS; Rodriguez-Cabello JC; Hasirci V
    Biomed Mater; 2018 Jul; 13(5):055010. PubMed ID: 29974870
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biomimetic composite scaffolds containing bioceramics and collagen/gelatin for bone tissue engineering - A mini review.
    Kuttappan S; Mathew D; Nair MB
    Int J Biol Macromol; 2016 Dec; 93(Pt B):1390-1401. PubMed ID: 27316767
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanostructured scaffolds for bone tissue engineering.
    Li X; Wang L; Fan Y; Feng Q; Cui FZ; Watari F
    J Biomed Mater Res A; 2013 Aug; 101(8):2424-35. PubMed ID: 23377988
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vascularization in Craniofacial Bone Tissue Engineering.
    Tian T; Zhang T; Lin Y; Cai X
    J Dent Res; 2018 Aug; 97(9):969-976. PubMed ID: 29608865
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Osteogenesis and angiogenesis of tissue-engineered bone constructed by prevascularized β-tricalcium phosphate scaffold and mesenchymal stem cells.
    Wang L; Fan H; Zhang ZY; Lou AJ; Pei GX; Jiang S; Mu TW; Qin JJ; Chen SY; Jin D
    Biomaterials; 2010 Dec; 31(36):9452-61. PubMed ID: 20869769
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A review of materials, fabrication methods, and strategies used to enhance bone regeneration in engineered bone tissues.
    Stevens B; Yang Y; Mohandas A; Stucker B; Nguyen KT
    J Biomed Mater Res B Appl Biomater; 2008 May; 85(2):573-82. PubMed ID: 17937408
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multilayer scaffolds in orthopaedic tissue engineering.
    Atesok K; Doral MN; Karlsson J; Egol KA; Jazrawi LM; Coelho PG; Martinez A; Matsumoto T; Owens BD; Ochi M; Hurwitz SR; Atala A; Fu FH; Lu HH; Rodeo SA
    Knee Surg Sports Traumatol Arthrosc; 2016 Jul; 24(7):2365-73. PubMed ID: 25466277
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Contrasting effects of vasculogenic induction upon biaxial bioreactor stimulation of mesenchymal stem cells and endothelial progenitor cells cocultures in three-dimensional scaffolds under in vitro and in vivo paradigms for vascularized bone tissue engineering.
    Liu Y; Teoh SH; Chong MS; Yeow CH; Kamm RD; Choolani M; Chan JK
    Tissue Eng Part A; 2013 Apr; 19(7-8):893-904. PubMed ID: 23102089
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Review of vascularised bone tissue-engineering strategies with a focus on co-culture systems.
    Liu Y; Chan JK; Teoh SH
    J Tissue Eng Regen Med; 2015 Feb; 9(2):85-105. PubMed ID: 23166000
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rapid prototyping technology and its application in bone tissue engineering.
    Yuan B; Zhou SY; Chen XS
    J Zhejiang Univ Sci B; 2017 Apr.; 18(4):303-315. PubMed ID: 28378568
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chitosan based biocomposite scaffolds for bone tissue engineering.
    Saravanan S; Leena RS; Selvamurugan N
    Int J Biol Macromol; 2016 Dec; 93(Pt B):1354-1365. PubMed ID: 26845481
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bone regeneration strategies with bone marrow stromal cells in orthopaedic surgery.
    Stanovici J; Le Nail LR; Brennan MA; Vidal L; Trichet V; Rosset P; Layrolle P
    Curr Res Transl Med; 2016; 64(2):83-90. PubMed ID: 27316391
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of bone scaffolds by micro-CT.
    Peyrin F
    Osteoporos Int; 2011 Jun; 22(6):2043-8. PubMed ID: 21523402
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The role of natural polymers in bone tissue engineering.
    Guo L; Liang Z; Yang L; Du W; Yu T; Tang H; Li C; Qiu H
    J Control Release; 2021 Oct; 338():571-582. PubMed ID: 34481026
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigation of angiogenesis in bioactive 3-dimensional poly(d,l-lactide-co-glycolide)/nano-hydroxyapatite scaffolds by in vivo multiphoton microscopy in murine calvarial critical bone defect.
    Li J; Xu Q; Teng B; Yu C; Li J; Song L; Lai YX; Zhang J; Zheng W; Ren PG
    Acta Biomater; 2016 Sep; 42():389-399. PubMed ID: 27326916
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rabbit tibial periosteum and saphenous arteriovenous vascular bundle as an in vivo bioreactor to construct vascularized tissue-engineered bone: a feasibility study.
    Han D; Guan X; Wang J; Wei J; Li Q
    Artif Organs; 2014 Feb; 38(2):167-74. PubMed ID: 23845001
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Acceleration of vascularized bone tissue-engineered constructs in a large animal model combining intrinsic and extrinsic vascularization.
    Weigand A; Beier JP; Hess A; Gerber T; Arkudas A; Horch RE; Boos AM
    Tissue Eng Part A; 2015 May; 21(9-10):1680-94. PubMed ID: 25760576
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent advances in bone tissue engineering scaffolds.
    Bose S; Roy M; Bandyopadhyay A
    Trends Biotechnol; 2012 Oct; 30(10):546-54. PubMed ID: 22939815
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthetic and Bone tissue engineering graft substitutes: What is the future?
    Valtanen RS; Yang YP; Gurtner GC; Maloney WJ; Lowenberg DW
    Injury; 2021 Jun; 52 Suppl 2():S72-S77. PubMed ID: 32732118
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The performance of bone tissue engineering scaffolds in in vivo animal models: A systematic review.
    de Misquita MR; Bentini R; Goncalves F
    J Biomater Appl; 2016 Nov; 31(5):625-636. PubMed ID: 27334129
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.