BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 23433122)

  • 21. The effects of age and Cx3cr1 deficiency on retinal microglia in the Ins2(Akita) diabetic mouse.
    Kezic JM; Chen X; Rakoczy EP; McMenamin PG
    Invest Ophthalmol Vis Sci; 2013 Jan; 54(1):854-63. PubMed ID: 23307960
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantitative analysis of pupillary light reflex by real-time autofluorescent imaging in a diabetic mouse model.
    Kumar S; Zhuo L
    Exp Eye Res; 2011 Mar; 92(3):164-72. PubMed ID: 21272577
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vascular endothelial growth factor is present in glial cells of the retina and optic nerve of human subjects with nonproliferative diabetic retinopathy.
    Amin RH; Frank RN; Kennedy A; Eliott D; Puklin JE; Abrams GW
    Invest Ophthalmol Vis Sci; 1997 Jan; 38(1):36-47. PubMed ID: 9008628
    [TBL] [Abstract][Full Text] [Related]  

  • 24. IL-1β is upregulated in the diabetic retina and retinal vessels: cell-specific effect of high glucose and IL-1β autostimulation.
    Liu Y; Biarnés Costa M; Gerhardinger C
    PLoS One; 2012; 7(5):e36949. PubMed ID: 22615852
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spatial frequency threshold and contrast sensitivity of an optomotor behavior are impaired in the Ins2Akita mouse model of diabetes.
    Akimov NP; Rentería RC
    Behav Brain Res; 2012 Jan; 226(2):601-5. PubMed ID: 21963766
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Topical Nerve Growth Factor (NGF) restores electrophysiological alterations in the Ins2
    Castoldi V; Zerbini G; Maestroni S; Viganò I; Rama P; Leocani L
    Exp Eye Res; 2023 Dec; 237():109693. PubMed ID: 37890756
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Diabetic eNOS-knockout mice develop accelerated retinopathy.
    Li Q; Verma A; Han PY; Nakagawa T; Johnson RJ; Grant MB; Campbell-Thompson M; Jarajapu YP; Lei B; Hauswirth WW
    Invest Ophthalmol Vis Sci; 2010 Oct; 51(10):5240-6. PubMed ID: 20435587
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Single-cell transcriptome analysis of the Akimba mouse retina reveals cell-type-specific insights into the pathobiology of diabetic retinopathy.
    Van Hove I; De Groef L; Boeckx B; Modave E; Hu TT; Beets K; Etienne I; Van Bergen T; Lambrechts D; Moons L; Feyen JHM; Porcu M
    Diabetologia; 2020 Oct; 63(10):2235-2248. PubMed ID: 32734440
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Retinopathy is reduced during experimental diabetes in a mouse model of outer retinal degeneration.
    de Gooyer TE; Stevenson KA; Humphries P; Simpson DA; Gardiner TA; Stitt AW
    Invest Ophthalmol Vis Sci; 2006 Dec; 47(12):5561-8. PubMed ID: 17122149
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evidence supporting a role for N-(3-formyl-3,4-dehydropiperidino)lysine accumulation in Müller glia dysfunction and death in diabetic retinopathy.
    Yong PH; Zong H; Medina RJ; Limb GA; Uchida K; Stitt AW; Curtis TM
    Mol Vis; 2010 Dec; 16():2524-38. PubMed ID: 21151599
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sustained intraocular VEGF neutralization results in retinal neurodegeneration in the Ins2(Akita) diabetic mouse.
    Hombrebueno JR; Ali IH; Xu H; Chen M
    Sci Rep; 2015 Dec; 5():18316. PubMed ID: 26671074
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pigment epithelium-derived factor (PEDF) peptide eye drops reduce inflammation, cell death and vascular leakage in diabetic retinopathy in Ins2(Akita) mice.
    Liu Y; Leo LF; McGregor C; Grivitishvili A; Barnstable CJ; Tombran-Tink J
    Mol Med; 2012 Dec; 18(1):1387-401. PubMed ID: 23019073
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Longitudinal in vivo imaging of retinal gliosis in a diabetic mouse model.
    Kumar S; Zhuo L
    Exp Eye Res; 2010 Oct; 91(4):530-6. PubMed ID: 20655908
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Aquaporin 4 knockdown exacerbates streptozotocin-induced diabetic retinopathy through aggravating inflammatory response.
    Cui B; Sun JH; Xiang FF; Liu L; Li WJ
    Exp Eye Res; 2012 May; 98():37-43. PubMed ID: 22449442
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Disruption of Fractalkine Signaling Leads to Microglial Activation and Neuronal Damage in the Diabetic Retina.
    Cardona SM; Mendiola AS; Yang YC; Adkins SL; Torres V; Cardona AE
    ASN Neuro; 2015; 7(5):. PubMed ID: 26514658
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Retinal O-linked N-acetylglucosamine protein modifications: implications for postnatal retinal vascularization and the pathogenesis of diabetic retinopathy.
    Gurel Z; Sieg KM; Shallow KD; Sorenson CM; Sheibani N
    Mol Vis; 2013; 19():1047-59. PubMed ID: 23734074
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Retinal changes in mice spontaneously developing diabetes by Th17-cell deviation.
    Taguchi M; Someya H; Inada M; Nishio Y; Takayama K; Harimoto K; Karasawa Y; Ito M; Takeuchi M
    Exp Eye Res; 2020 Sep; 198():108155. PubMed ID: 32717339
    [TBL] [Abstract][Full Text] [Related]  

  • 38. TNFalpha is required for late BRB breakdown in diabetic retinopathy, and its inhibition prevents leukostasis and protects vessels and neurons from apoptosis.
    Huang H; Gandhi JK; Zhong X; Wei Y; Gong J; Duh EJ; Vinores SA
    Invest Ophthalmol Vis Sci; 2011 Mar; 52(3):1336-44. PubMed ID: 21212173
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Short-and Long-Term Expression of Vegf: A Temporal Regulation of a Key Factor in Diabetic Retinopathy.
    Bucolo C; Barbieri A; Viganò I; Marchesi N; Bandello F; Drago F; Govoni S; Zerbini G; Pascale A
    Front Pharmacol; 2021; 12():707909. PubMed ID: 34489701
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Retinal blood flow abnormalities following six months of hyperglycemia in the Ins2(Akita) mouse.
    Wright WS; Yadav AS; McElhatten RM; Harris NR
    Exp Eye Res; 2012 May; 98(1):9-15. PubMed ID: 22440813
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.