These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
323 related articles for article (PubMed ID: 23433935)
21. Effect of halide ions and carbonates on organic contaminant degradation by hydroxyl radical-based advanced oxidation processes in saline waters. Grebel JE; Pignatello JJ; Mitch WA Environ Sci Technol; 2010 Sep; 44(17):6822-8. PubMed ID: 20681567 [TBL] [Abstract][Full Text] [Related]
22. Coordination of copper(II) ions by the fragments of neuropeptide gamma containing D1, H9, H12 residues and products of copper-catalyzed oxidation. Jankowska E; Pietruszka M; Kowalik-Jankowska T Dalton Trans; 2012 Feb; 41(6):1683-94. PubMed ID: 22159001 [TBL] [Abstract][Full Text] [Related]
23. Inactivation of MS2 coliphage in Fenton and Fenton-like systems: role of transition metals, hydrogen peroxide and sunlight. Nieto-Juarez JI; Pierzchła K; Sienkiewicz A; Kohn T Environ Sci Technol; 2010 May; 44(9):3351-6. PubMed ID: 20356037 [TBL] [Abstract][Full Text] [Related]
24. Effect of pH on Fenton process using estimation of hydroxyl radical with salicylic acid as trapping reagent. Chang CY; Hsieh YH; Cheng KY; Hsieh LL; Cheng TC; Yao KS Water Sci Technol; 2008; 58(4):873-9. PubMed ID: 18776624 [TBL] [Abstract][Full Text] [Related]
25. Factors affecting the yield of oxidants from the reaction of nanoparticulate zero-valent iron and oxygen. Keenan CR; Sedlak DL Environ Sci Technol; 2008 Feb; 42(4):1262-7. PubMed ID: 18351103 [TBL] [Abstract][Full Text] [Related]
26. Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton-like systems. Kwan WP; Voelker BM Environ Sci Technol; 2003 Mar; 37(6):1150-8. PubMed ID: 12680668 [TBL] [Abstract][Full Text] [Related]
27. Photodegradation of organic pollutants catalyzed by iron species under visible light irradiation. Sun C; Chen C; Ma W; Zhao J Phys Chem Chem Phys; 2011 Feb; 13(6):1957-69. PubMed ID: 21082142 [TBL] [Abstract][Full Text] [Related]
28. Mechanistic studies on peroxide activation by a water-soluble iron(III)-porphyrin: implications for O-O bond activation in aqueous and nonaqueous solvents. Wolak M; van Eldik R Chemistry; 2007; 13(17):4873-83. PubMed ID: 17366654 [TBL] [Abstract][Full Text] [Related]
29. Influence of electrostatics on the oxidation rates of organic compounds in heterogeneous Fenton systems. Kwan WP; Voelker BM Environ Sci Technol; 2004 Jun; 38(12):3425-31. PubMed ID: 15260344 [TBL] [Abstract][Full Text] [Related]
30. A new insight into Fenton and Fenton-like processes for water treatment: Part II. Influence of organic compounds on Fe(III)/Fe(II) interconversion and the course of reactions. Jiang C; Gao Z; Qu H; Li J; Wang X; Li P; Liu H J Hazard Mater; 2013 Apr; 250-251():76-81. PubMed ID: 23434482 [TBL] [Abstract][Full Text] [Related]
31. Novel heterogeneous catalysts in the wet peroxide oxidation of phenol. Ovejero G; Sotelo JL; Martinez F; Gordo L Water Sci Technol; 2001; 44(5):153-60. PubMed ID: 11695454 [TBL] [Abstract][Full Text] [Related]
32. Ambivalent role of ascorbic acid in the metal-catalyzed oxidation of oligopeptides. Bodnár N; Várnagy K; Nagy L; Csire G; Kállay C J Inorg Biochem; 2021 Sep; 222():111510. PubMed ID: 34126320 [TBL] [Abstract][Full Text] [Related]
33. Investigation of the generation of hydroxyl radicals and their oxidative role in the presence of heterogeneous copper catalysts. Kim JK; Metcalfe IS Chemosphere; 2007 Oct; 69(5):689-96. PubMed ID: 17604820 [TBL] [Abstract][Full Text] [Related]
34. Prooxidant action of rosmarinic acid: transition metal-dependent generation of reactive oxygen species. Murakami K; Haneda M; Qiao S; Naruse M; Yoshino M Toxicol In Vitro; 2007 Jun; 21(4):613-7. PubMed ID: 17267171 [TBL] [Abstract][Full Text] [Related]
35. Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt. Anipsitakis GP; Dionysiou DD Environ Sci Technol; 2003 Oct; 37(20):4790-7. PubMed ID: 14594393 [TBL] [Abstract][Full Text] [Related]
36. Does hydrogen-bonding donation to manganese(IV)-oxo and iron(IV)-oxo oxidants affect the oxygen-atom transfer ability? A computational study. Latifi R; Sainna MA; Rybak-Akimova EV; de Visser SP Chemistry; 2013 Mar; 19(12):4058-68. PubMed ID: 23362213 [TBL] [Abstract][Full Text] [Related]
37. Synthesis, characterization and performance of high energy ball milled meso-scale zero valent iron in Fenton reaction. Ambika S; Devasena M; Nambi IM J Environ Manage; 2016 Oct; 181():847-855. PubMed ID: 27397842 [TBL] [Abstract][Full Text] [Related]
38. Antioxidant and prooxidant effects of polyphenol compounds on copper-mediated DNA damage. Perron NR; García CR; Pinzón JR; Chaur MN; Brumaghim JL J Inorg Biochem; 2011 May; 105(5):745-53. PubMed ID: 21481816 [TBL] [Abstract][Full Text] [Related]
39. pH effects on iron-catalyzed oxidation using Fenton's reagent. Duesterberg CK; Mylon SE; Waite TD Environ Sci Technol; 2008 Nov; 42(22):8522-7. PubMed ID: 19068842 [TBL] [Abstract][Full Text] [Related]
40. Quantitative characterization of hydroxyl radical generation in a goethite-catalyzed Fenton-like reaction. Lin ZR; Zhao L; Dong YH Chemosphere; 2015 Dec; 141():7-12. PubMed ID: 26069944 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]