These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 23434184)
1. Polysaccharide biosynthesis protein CapD is a novel pathogenicity-associated determinant of Haemophilus parasuis involved in serum-resistance ability. Wang X; Xu X; Wu Y; Li L; Cao R; Cai X; Chen H Vet Microbiol; 2013 May; 164(1-2):184-9. PubMed ID: 23434184 [TBL] [Abstract][Full Text] [Related]
2. Distribution of genes involved in sialic acid utilization in strains of Haemophilus parasuis. Martínez-Moliner V; Soler-Llorens P; Moleres J; Garmendia J; Aragon V Microbiology (Reading); 2012 Aug; 158(Pt 8):2117-2124. PubMed ID: 22609756 [TBL] [Abstract][Full Text] [Related]
3. The arcA gene contributes to the serum resistance and virulence of Haemophilus parasuis serovar 13 clinical strain EP3. Ding L; Wen X; He L; Yan X; Wen Y; Cao S; Huang X; Wu R; Wen Y Vet Microbiol; 2016 Nov; 196():67-71. PubMed ID: 27939158 [TBL] [Abstract][Full Text] [Related]
5. Effect of cheY deletion on growth and colonization in a Haemophilus parasuis serovar 13 clinical strain EP3. He L; Wen X; Yan X; Ding L; Cao S; Huang X; Wu R; Wen Y Gene; 2016 Feb; 577(1):96-100. PubMed ID: 26657038 [TBL] [Abstract][Full Text] [Related]
6. Advances in the quest for virulence factors of Haemophilus parasuis. Costa-Hurtado M; Aragon V Vet J; 2013 Dec; 198(3):571-6. PubMed ID: 24084037 [TBL] [Abstract][Full Text] [Related]
7. Cytolethal distending toxin (CDT) of the Haemophilus parasuis SC096 strain contributes to serum resistance and adherence to and invasion of PK-15 and PUVEC cells. Zhang B; He Y; Xu C; Xu L; Feng S; Liao M; Ren T Vet Microbiol; 2012 May; 157(1-2):237-42. PubMed ID: 22221379 [TBL] [Abstract][Full Text] [Related]
8. Identification and analysis of potential virulence-associated genes in Haemophilus parasuis based on genomic subtraction. Wang X; Xu X; Zhang S; Guo F; Cai X; Chen H Microb Pathog; 2011 Oct; 51(4):291-6. PubMed ID: 21742027 [TBL] [Abstract][Full Text] [Related]
9. Serum-resistance in Haemophilus parasuis is associated with systemic disease in swine. Cerdà-Cuéllar M; Aragon V Vet J; 2008 Mar; 175(3):384-9. PubMed ID: 17368943 [TBL] [Abstract][Full Text] [Related]
10. Differential interactions of virulent and non-virulent H. parasuis strains with naïve or swine influenza virus pre-infected dendritic cells. Mussá T; Rodríguez-Cariño C; Sánchez-Chardi A; Baratelli M; Costa-Hurtado M; Fraile L; Domínguez J; Aragon V; Montoya M Vet Res; 2012 Nov; 43(1):80. PubMed ID: 23157617 [TBL] [Abstract][Full Text] [Related]
11. Deletion of the vacJ gene affects the biology and virulence in Haemophilus parasuis serovar 5. Zhao L; Gao X; Liu C; Lv X; Jiang N; Zheng S Gene; 2017 Mar; 603():42-53. PubMed ID: 27988234 [TBL] [Abstract][Full Text] [Related]
12. Invasion of endothelial cells by systemic and nasal strains of Haemophilus parasuis. Aragon V; Bouchet B; Gottschalk M Vet J; 2010 Nov; 186(2):264-7. PubMed ID: 19748806 [TBL] [Abstract][Full Text] [Related]
13. ClpP participates in stress tolerance and negatively regulates biofilm formation in Haemophilus parasuis. Huang J; Wang X; Cao Q; Feng F; Xu X; Cai X Vet Microbiol; 2016 Jan; 182():141-9. PubMed ID: 26711041 [TBL] [Abstract][Full Text] [Related]
14. Time course Haemophilus parasuis infection reveals pathological differences between virulent and non-virulent strains in the respiratory tract. Bello-Orti B; Costa-Hurtado M; Martinez-Moliner V; Segalés J; Aragon V Vet Microbiol; 2014 Jun; 170(3-4):430-7. PubMed ID: 24613292 [TBL] [Abstract][Full Text] [Related]
15. Serologic profiling of Haemophilus parasuis-vaccinated sows and their litters using a novel oligopeptide permease A enzyme-linked immunosorbent assay reveals unexpected patterns of serological response and maternal antibody transfer. Galina Pantoja L; Stammen B; Minton B; Amodie D J Vet Diagn Invest; 2014 Jan; 26(1):125-30. PubMed ID: 24407228 [TBL] [Abstract][Full Text] [Related]
16. Comparative genomic and methylome analysis of non-virulent D74 and virulent Nagasaki Haemophilus parasuis isolates. Nicholson TL; Brunelle BW; Bayles DO; Alt DP; Shore SM PLoS One; 2018; 13(11):e0205700. PubMed ID: 30383795 [TBL] [Abstract][Full Text] [Related]
17. Genomic and antigenic characterization of monomeric autotransporters of Haemophilus parasuis: an ongoing process of reductive evolution. Pina-Pedrero S; Olvera A; Pérez-Simó M; Bensaid A Microbiology (Reading); 2012 Feb; 158(Pt 2):436-447. PubMed ID: 22075024 [TBL] [Abstract][Full Text] [Related]
18. Identification of novel potential virulence-associated factors in Haemophilus parasuis. Sack M; Baltes N Vet Microbiol; 2009 May; 136(3-4):382-6. PubMed ID: 19117700 [TBL] [Abstract][Full Text] [Related]
19. VtaA8 and VtaA9 from Haemophilus parasuis delay phagocytosis by alveolar macrophages. Costa-Hurtado M; Ballester M; Galofré-Milà N; Darji A; Aragon V Vet Res; 2012 Jul; 43(1):57. PubMed ID: 22839779 [TBL] [Abstract][Full Text] [Related]
20. Genome comparison of three serovar 5 pathogenic strains of Haemophilus parasuis: insights into an evolving swine pathogen. Bello-Ortí B; Aragon V; Pina-Pedrero S; Bensaid A Microbiology (Reading); 2014 Sep; 160(Pt 9):1974-1984. PubMed ID: 24951673 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]