These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 23434303)

  • 21. Real-time cerebellar neuroprosthetic system based on a spiking neural network model of motor learning.
    Xu T; Xiao N; Zhai X; Kwan Chan P; Tin C
    J Neural Eng; 2018 Feb; 15(1):016021. PubMed ID: 29115280
    [TBL] [Abstract][Full Text] [Related]  

  • 22. What the cerebellum computes.
    Ohyama T; Nores WL; Murphy M; Mauk MD
    Trends Neurosci; 2003 Apr; 26(4):222-7. PubMed ID: 12689774
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The cerebellum in action: a simulation and robotics study.
    Hofstötter C; Mintz M; Verschure PF
    Eur J Neurosci; 2002 Oct; 16(7):1361-76. PubMed ID: 12405996
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adaptive and predictive control of a simulated robot arm.
    Tolu S; Vanegas M; Garrido JA; Luque NR; Ros E
    Int J Neural Syst; 2013 Jun; 23(3):1350010. PubMed ID: 23627657
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spiking Neural Network With Distributed Plasticity Reproduces Cerebellar Learning in Eye Blink Conditioning Paradigms.
    Antonietti A; Casellato C; Garrido JA; Luque NR; Naveros F; Ros E; D' Angelo E; Pedrocchi A
    IEEE Trans Biomed Eng; 2016 Jan; 63(1):210-9. PubMed ID: 26441441
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The cerebellum as an adaptive filter: a general model?
    Dean P; Porrill J
    Funct Neurol; 2010; 25(3):173-80. PubMed ID: 21375070
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of chaotic resonance in cerebellar learning.
    Tokuda IT; Han CE; Aihara K; Kawato M; Schweighofer N
    Neural Netw; 2010 Sep; 23(7):836-42. PubMed ID: 20494551
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On Robot Compliance: A Cerebellar Control Approach.
    Abadia I; Naveros F; Garrido JA; Ros E; Luque NR
    IEEE Trans Cybern; 2021 May; 51(5):2476-2489. PubMed ID: 31647453
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computing with networks of spiking neurons on a biophysically motivated floating-gate based neuromorphic integrated circuit.
    Brink S; Nease S; Hasler P
    Neural Netw; 2013 Sep; 45():39-49. PubMed ID: 23541925
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An FPGA hardware/software co-design towards evolvable spiking neural networks for robotics application.
    Johnston SP; Prasad G; Maguire L; McGinnity TM
    Int J Neural Syst; 2010 Dec; 20(6):447-61. PubMed ID: 21117269
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cerebellar-inspired adaptive control of a robot eye actuated by pneumatic artificial muscles.
    Lenz A; Anderson SR; Pipe AG; Melhuish C; Dean P; Porrill J
    IEEE Trans Syst Man Cybern B Cybern; 2009 Dec; 39(6):1420-33. PubMed ID: 19369158
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A realistic bi-hemispheric model of the cerebellum uncovers the purpose of the abundant granule cells during motor control.
    Pinzon-Morales RD; Hirata Y
    Front Neural Circuits; 2015; 9():18. PubMed ID: 25983678
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cerebellum lesion impairs eyeblink-like classical conditioning in goldfish.
    Gómez A; Durán E; Salas C; Rodríguez F
    Neuroscience; 2010 Mar; 166(1):49-60. PubMed ID: 20006973
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A neuron-inspired computational architecture for spatiotemporal visual processing: real-time visual sensory integration for humanoid robots.
    Holzbach A; Cheng G
    Biol Cybern; 2014 Jun; 108(3):249-59. PubMed ID: 24687170
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Real-Time Simulation of a Cerebellar Scaffold Model on Graphics Processing Units.
    Kuriyama R; Casellato C; D'Angelo E; Yamazaki T
    Front Cell Neurosci; 2021; 15():623552. PubMed ID: 33897369
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adaptive control of 2-wheeled balancing robot by cerebellar neuronal network model.
    Tanaka Y; Ohata Y; Kawamoto T; Hirata Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1589-92. PubMed ID: 21096127
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modeling the insect mushroom bodies: application to a delayed match-to-sample task.
    Arena P; Patané L; Stornanti V; Termini PS; Zäpf B; Strauss R
    Neural Netw; 2013 May; 41():202-11. PubMed ID: 23246431
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anticipatory grip force control using a cerebellar model.
    de Gruijl JR; van der Smagt P; De Zeeuw CI
    Neuroscience; 2009 Sep; 162(3):777-86. PubMed ID: 19249337
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of GPU- and CPU-implementations of mean-firing rate neural networks on parallel hardware.
    Dinkelbach HÜ; Vitay J; Beuth F; Hamker FH
    Network; 2012; 23(4):212-36. PubMed ID: 23140422
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Timing mechanisms in the cerebellum: testing predictions of a large-scale computer simulation.
    Medina JF; Garcia KS; Nores WL; Taylor NM; Mauk MD
    J Neurosci; 2000 Jul; 20(14):5516-25. PubMed ID: 10884335
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.