These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
891 related articles for article (PubMed ID: 23434322)
1. Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Spruijt CG; Gnerlich F; Smits AH; Pfaffeneder T; Jansen PW; Bauer C; Münzel M; Wagner M; Müller M; Khan F; Eberl HC; Mensinga A; Brinkman AB; Lephikov K; Müller U; Walter J; Boelens R; van Ingen H; Leonhardt H; Carell T; Vermeulen M Cell; 2013 Feb; 152(5):1146-59. PubMed ID: 23434322 [TBL] [Abstract][Full Text] [Related]
2. Quantification of Oxidized 5-Methylcytosine Bases and TET Enzyme Activity. Liu MY; DeNizio JE; Kohli RM Methods Enzymol; 2016; 573():365-85. PubMed ID: 27372762 [TBL] [Abstract][Full Text] [Related]
3. Tet oxidizes thymine to 5-hydroxymethyluracil in mouse embryonic stem cell DNA. Pfaffeneder T; Spada F; Wagner M; Brandmayr C; Laube SK; Eisen D; Truss M; Steinbacher J; Hackner B; Kotljarova O; Schuermann D; Michalakis S; Kosmatchev O; Schiesser S; Steigenberger B; Raddaoui N; Kashiwazaki G; Müller U; Spruijt CG; Vermeulen M; Leonhardt H; Schär P; Müller M; Carell T Nat Chem Biol; 2014 Jul; 10(7):574-81. PubMed ID: 24838012 [TBL] [Abstract][Full Text] [Related]
4. A sensitive mass spectrometry method for simultaneous quantification of DNA methylation and hydroxymethylation levels in biological samples. Le T; Kim KP; Fan G; Faull KF Anal Biochem; 2011 May; 412(2):203-9. PubMed ID: 21272560 [TBL] [Abstract][Full Text] [Related]
5. GADD45a physically and functionally interacts with TET1. Kienhöfer S; Musheev MU; Stapf U; Helm M; Schomacher L; Niehrs C; Schäfer A Differentiation; 2015; 90(1-3):59-68. PubMed ID: 26546041 [TBL] [Abstract][Full Text] [Related]
6. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Tahiliani M; Koh KP; Shen Y; Pastor WA; Bandukwala H; Brudno Y; Agarwal S; Iyer LM; Liu DR; Aravind L; Rao A Science; 2009 May; 324(5929):930-5. PubMed ID: 19372391 [TBL] [Abstract][Full Text] [Related]
7. Sensitive and simultaneous determination of 5-methylcytosine and its oxidation products in genomic DNA by chemical derivatization coupled with liquid chromatography-tandem mass spectrometry analysis. Tang Y; Zheng SJ; Qi CB; Feng YQ; Yuan BF Anal Chem; 2015 Mar; 87(6):3445-52. PubMed ID: 25675106 [TBL] [Abstract][Full Text] [Related]
8. 5-methylcytosine and its derivatives. Yuan BF Adv Clin Chem; 2014; 67():151-87. PubMed ID: 25735861 [TBL] [Abstract][Full Text] [Related]
9. TET2-mediated 5-hydroxymethylcytosine induces genetic instability and mutagenesis. Mahfoudhi E; Talhaoui I; Cabagnols X; Della Valle V; Secardin L; Rameau P; Bernard OA; Ishchenko AA; Abbes S; Vainchenker W; Saparbaev M; Plo I DNA Repair (Amst); 2016 Jul; 43():78-88. PubMed ID: 27289557 [TBL] [Abstract][Full Text] [Related]
11. Mutagenic and cytotoxic properties of oxidation products of 5-methylcytosine revealed by next-generation sequencing. Xing XW; Liu YL; Vargas M; Wang Y; Feng YQ; Zhou X; Yuan BF PLoS One; 2013; 8(9):e72993. PubMed ID: 24066027 [TBL] [Abstract][Full Text] [Related]
12. 5-hydroxymethylcytosine in cancer: significance in diagnosis and therapy. Vasanthakumar A; Godley LA Cancer Genet; 2015 May; 208(5):167-77. PubMed ID: 25892122 [TBL] [Abstract][Full Text] [Related]
13. Structure and Function of TET Enzymes. Yin X; Xu Y Adv Exp Med Biol; 2016; 945():275-302. PubMed ID: 27826843 [TBL] [Abstract][Full Text] [Related]
14. Heavy Metals Induce Decline of Derivatives of 5-Methycytosine in Both DNA and RNA of Stem Cells. Xiong J; Liu X; Cheng QY; Xiao S; Xia LX; Yuan BF; Feng YQ ACS Chem Biol; 2017 Jun; 12(6):1636-1643. PubMed ID: 28448110 [TBL] [Abstract][Full Text] [Related]
15. Arsenite Targets the Zinc Finger Domains of Tet Proteins and Inhibits Tet-Mediated Oxidation of 5-Methylcytosine. Liu S; Jiang J; Li L; Amato NJ; Wang Z; Wang Y Environ Sci Technol; 2015 Oct; 49(19):11923-31. PubMed ID: 26355596 [TBL] [Abstract][Full Text] [Related]
16. MLML: consistent simultaneous estimates of DNA methylation and hydroxymethylation. Qu J; Zhou M; Song Q; Hong EE; Smith AD Bioinformatics; 2013 Oct; 29(20):2645-6. PubMed ID: 23969133 [TBL] [Abstract][Full Text] [Related]
17. 5-hydroxymethylcytosine: a new insight into epigenetics in cancer. Ye C; Li L Cancer Biol Ther; 2014 Jan; 15(1):10-5. PubMed ID: 24253310 [TBL] [Abstract][Full Text] [Related]
18. Maintenance DNA Methyltransferase Activity in the Presence of Oxidized Forms of 5-Methylcytosine: Structural Basis for Ten Eleven Translocation-Mediated DNA Demethylation. Seiler CL; Fernandez J; Koerperich Z; Andersen MP; Kotandeniya D; Nguyen ME; Sham YY; Tretyakova NY Biochemistry; 2018 Oct; 57(42):6061-6069. PubMed ID: 30230311 [TBL] [Abstract][Full Text] [Related]
19. Whole-genome analysis of 5-hydroxymethylcytosine and 5-methylcytosine at base resolution in the human brain. Wen L; Li X; Yan L; Tan Y; Li R; Zhao Y; Wang Y; Xie J; Zhang Y; Song C; Yu M; Liu X; Zhu P; Li X; Hou Y; Guo H; Wu X; He C; Li R; Tang F; Qiao J Genome Biol; 2014 Mar; 15(3):R49. PubMed ID: 24594098 [TBL] [Abstract][Full Text] [Related]
20. Determination of oxidation products of 5-methylcytosine in plants by chemical derivatization coupled with liquid chromatography/tandem mass spectrometry analysis. Tang Y; Xiong J; Jiang HP; Zheng SJ; Feng YQ; Yuan BF Anal Chem; 2014 Aug; 86(15):7764-72. PubMed ID: 24970241 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]