These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 2343460)

  • 1. Inhibition of rat heart mitochondrial electron transport in vitro: implications for the cardiotoxic action of allylamine or its primary metabolite, acrolein.
    Biagini RE; Toraason MA; Lynch DW; Winston GW
    Toxicology; 1990 May; 62(1):95-106. PubMed ID: 2343460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative toxicity of allylamine and acrolein in cultured myocytes and fibroblasts from neonatal rat heart.
    Toraason M; Luken ME; Breitenstein M; Krueger JA; Biagini RE
    Toxicology; 1989 May; 56(1):107-17. PubMed ID: 2728003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Allylamine cardiotoxicity--IV. Metabolism to acrolein by cardiovascular tissues.
    Nelson TJ; Boor PJ
    Biochem Pharmacol; 1982 Feb; 31(4):509-14. PubMed ID: 7066019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Allylamine and acrolein toxicity in perfused rat hearts.
    Sklar JL; Anderson PG; Boor PJ
    Toxicol Appl Pharmacol; 1991 Mar; 107(3):535-44. PubMed ID: 2000639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of glutathione S-transferases as a defense against reactive electrophiles in the blood vessel wall.
    He NG; Awasthi S; Singhal SS; Trent MB; Boor PJ
    Toxicol Appl Pharmacol; 1998 Sep; 152(1):83-9. PubMed ID: 9772203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of furosemide on mitochondrial electron transport system and oxidative phosphorylation.
    Orita Y; Fukuhara Y; Yanase M; Ando A; Okada N; Abe H
    Arzneimittelforschung; 1983; 33(10):1446-50. PubMed ID: 6316993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Allylamine cardiovascular toxicity: VI. Subcellular distribution in rat aortas.
    Hysmith RM; Boor PJ
    Toxicology; 1985 Jun; 35(3):179-87. PubMed ID: 2990070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative toxicity of 4-chlorobiphenyl and its metabolite 4-chloro-4'-biphenylol in isolated rat liver mitochondria.
    Nishihara Y
    Biochem Pharmacol; 1988 Aug; 37(15):2915-26. PubMed ID: 2969244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipid peroxidation and oxidative stress during acute allylamine-induced cardiovascular toxicity.
    Awasthi S; Boor PJ
    J Vasc Res; 1994; 31(1):33-41. PubMed ID: 8274624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Allylamine-induced vascular toxicity in vitro: prevention by semicarbazide-sensitive amine oxidase inhibitors.
    Ramos K; Grossman SL; Cox LR
    Toxicol Appl Pharmacol; 1988 Aug; 95(1):61-71. PubMed ID: 2842890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of serum and cellular semicarbazide-sensitive amine oxidase to amine metabolism and cardiovascular toxicity.
    Conklin DJ; Langford SD; Boor PJ
    Toxicol Sci; 1998 Dec; 46(2):386-92. PubMed ID: 10048142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical effects of PR toxin on rat liver mitochondrial respiration and oxidative phosphorylation.
    Wei YH; Ding WH; Wei RD
    Arch Biochem Biophys; 1984 May; 230(2):400-11. PubMed ID: 6324685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sites of inhibition of mitochondrial electron transport by rhein.
    Floridi A; Castiglione S; Bianchi C
    Biochem Pharmacol; 1989 Mar; 38(5):743-51. PubMed ID: 2522779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies of practolol on mitochondrial metabolism.
    Oliveira TC; Fortes JC; Lopes LC; Campello AP
    Res Commun Chem Pathol Pharmacol; 1980 Jul; 29(1):141-8. PubMed ID: 7403672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding of [14C] allylamine to isolated mitochondria from rat heart and aorta.
    Hysmith RM; Boor PJ
    Toxicology; 1987 Apr; 44(1):13-29. PubMed ID: 3105119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of ubiquinone on the inhibitory effect of adriamycin on mitochondrial oxidative phosphorylation.
    Muhammed H; Kurup CK
    Biochem J; 1984 Jan; 217(2):493-8. PubMed ID: 6696744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of the mitochondrial Mg2+-ATPase by propranolol.
    Wei YH; Lin TN; Hong CY; Chiang BN
    Biochem Pharmacol; 1985 Apr; 34(7):911-7. PubMed ID: 3157382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amine metabolism: a novel path to coronary artery vasospasm.
    Conklin DJ; Boyce CL; Trent MB; Boor PJ
    Toxicol Appl Pharmacol; 2001 Sep; 175(2):149-59. PubMed ID: 11543647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of calcium on NADH and succinate oxidation by rat heart submitochondrial particles.
    Panov AV; Scaduto RC
    Arch Biochem Biophys; 1995 Feb; 316(2):815-20. PubMed ID: 7864638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reverse electron transport effects on NADH formation and metmyoglobin reduction.
    Belskie KM; Van Buiten CB; Ramanathan R; Mancini RA
    Meat Sci; 2015 Jul; 105():89-92. PubMed ID: 25828162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.