BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

977 related articles for article (PubMed ID: 23434765)

  • 1. Regulation of Nrf2-an update.
    Niture SK; Khatri R; Jaiswal AK
    Free Radic Biol Med; 2014 Jan; 66():36-44. PubMed ID: 23434765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nrf2:INrf2 (Keap1) signaling in oxidative stress.
    Kaspar JW; Niture SK; Jaiswal AK
    Free Radic Biol Med; 2009 Nov; 47(9):1304-9. PubMed ID: 19666107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nrf2 signaling and cell survival.
    Niture SK; Kaspar JW; Shen J; Jaiswal AK
    Toxicol Appl Pharmacol; 2010 Apr; 244(1):37-42. PubMed ID: 19538984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antioxidant-induced INrf2 (Keap1) tyrosine 85 phosphorylation controls the nuclear export and degradation of the INrf2-Cul3-Rbx1 complex to allow normal Nrf2 activation and repression.
    Kaspar JW; Niture SK; Jaiswal AK
    J Cell Sci; 2012 Feb; 125(Pt 4):1027-38. PubMed ID: 22448038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aromatase Inhibitor-Mediated Downregulation of INrf2 (Keap1) Leads to Increased Nrf2 and Resistance in Breast Cancer.
    Khatri R; Shah P; Guha R; Rassool FV; Tomkinson AE; Brodie A; Jaiswal AK
    Mol Cancer Ther; 2015 Jul; 14(7):1728-37. PubMed ID: 25976679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antioxidant-induced modification of INrf2 cysteine 151 and PKC-delta-mediated phosphorylation of Nrf2 serine 40 are both required for stabilization and nuclear translocation of Nrf2 and increased drug resistance.
    Niture SK; Jain AK; Jaiswal AK
    J Cell Sci; 2009 Dec; 122(Pt 24):4452-64. PubMed ID: 19920073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prothymosin-alpha mediates nuclear import of the INrf2/Cul3 Rbx1 complex to degrade nuclear Nrf2.
    Niture SK; Jaiswal AK
    J Biol Chem; 2009 May; 284(20):13856-13868. PubMed ID: 19279002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An auto-regulatory loop between stress sensors INrf2 and Nrf2 controls their cellular abundance.
    Lee OH; Jain AK; Papusha V; Jaiswal AK
    J Biol Chem; 2007 Dec; 282(50):36412-20. PubMed ID: 17925401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hsp90 interaction with INrf2(Keap1) mediates stress-induced Nrf2 activation.
    Niture SK; Jaiswal AK
    J Biol Chem; 2010 Nov; 285(47):36865-75. PubMed ID: 20864537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oncogene PKCε controls INrf2-Nrf2 interaction in normal and cancer cells through phosphorylation of INrf2.
    Niture SK; Gnatt A; Jaiswal AK
    J Cell Sci; 2013 Dec; 126(Pt 24):5657-69. PubMed ID: 24127568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Keap1 controls postinduction repression of the Nrf2-mediated antioxidant response by escorting nuclear export of Nrf2.
    Sun Z; Zhang S; Chan JY; Zhang DD
    Mol Cell Biol; 2007 Sep; 27(18):6334-49. PubMed ID: 17636022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional characterization and role of INrf2 in antioxidant response element-mediated expression and antioxidant induction of NAD(P)H:quinone oxidoreductase1 gene.
    Dhakshinamoorthy S; Jaiswal AK
    Oncogene; 2001 Jun; 20(29):3906-17. PubMed ID: 11439354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorylation of Nrf2 at Ser40 by protein kinase C in response to antioxidants leads to the release of Nrf2 from INrf2, but is not required for Nrf2 stabilization/accumulation in the nucleus and transcriptional activation of antioxidant response element-mediated NAD(P)H:quinone oxidoreductase-1 gene expression.
    Bloom DA; Jaiswal AK
    J Biol Chem; 2003 Nov; 278(45):44675-82. PubMed ID: 12947090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An autoregulatory loop between Nrf2 and Cul3-Rbx1 controls their cellular abundance.
    Kaspar JW; Jaiswal AK
    J Biol Chem; 2010 Jul; 285(28):21349-58. PubMed ID: 20452971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Review of molecular mechanisms involved in the activation of the Nrf2-ARE signaling pathway by chemopreventive agents.
    Giudice A; Arra C; Turco MC
    Methods Mol Biol; 2010; 647():37-74. PubMed ID: 20694660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. INrf2 (Keap1) targets Bcl-2 degradation and controls cellular apoptosis.
    Niture SK; Jaiswal AK
    Cell Death Differ; 2011 Mar; 18(3):439-51. PubMed ID: 20865015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular mechanisms of the Keap1–Nrf2 pathway in stress response and cancer evolution.
    Taguchi K; Motohashi H; Yamamoto M
    Genes Cells; 2011 Feb; 16(2):123-40. PubMed ID: 21251164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Keap1-Nrf2 system as an in vivo sensor for electrophiles.
    Uruno A; Motohashi H
    Nitric Oxide; 2011 Aug; 25(2):153-60. PubMed ID: 21385624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tyrosine phosphorylation controls nuclear export of Fyn, allowing Nrf2 activation of cytoprotective gene expression.
    Kaspar JW; Jaiswal AK
    FASEB J; 2011 Mar; 25(3):1076-87. PubMed ID: 21097520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GSK-3beta acts upstream of Fyn kinase in regulation of nuclear export and degradation of NF-E2 related factor 2.
    Jain AK; Jaiswal AK
    J Biol Chem; 2007 Jun; 282(22):16502-10. PubMed ID: 17403689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 49.