BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 23434792)

  • 21. The m6A-epitranscriptomic signature in neurobiology: from neurodevelopment to brain plasticity.
    Widagdo J; Anggono V
    J Neurochem; 2018 Oct; 147(2):137-152. PubMed ID: 29873074
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Progress in epigenetic modification of mRNA and the function of m6A modification].
    Gan H; Hong L; Yang F; Liu D; Jin L; Zheng Q
    Sheng Wu Gong Cheng Xue Bao; 2019 May; 35(5):775-783. PubMed ID: 31222996
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Refined RIP-seq protocol for epitranscriptome analysis with low input materials.
    Zeng Y; Wang S; Gao S; Soares F; Ahmed M; Guo H; Wang M; Hua JT; Guan J; Moran MF; Tsao MS; He HH
    PLoS Biol; 2018 Sep; 16(9):e2006092. PubMed ID: 30212448
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deciphering the Epitranscriptomic Signatures in Cell Fate Determination and Development.
    Haran V; Lenka N
    Stem Cell Rev Rep; 2019 Aug; 15(4):474-496. PubMed ID: 31123982
    [TBL] [Abstract][Full Text] [Related]  

  • 25. RNA epitranscriptomics: Regulation of infection of RNA and DNA viruses by N
    Tan B; Gao SJ
    Rev Med Virol; 2018 Jul; 28(4):e1983. PubMed ID: 29698584
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CLIP-seq analysis of multi-mapped reads discovers novel functional RNA regulatory sites in the human transcriptome.
    Zhang Z; Xing Y
    Nucleic Acids Res; 2017 Sep; 45(16):9260-9271. PubMed ID: 28934506
    [TBL] [Abstract][Full Text] [Related]  

  • 27. N6-methyl-adenosine (m6A) in RNA: an old modification with a novel epigenetic function.
    Niu Y; Zhao X; Wu YS; Li MM; Wang XJ; Yang YG
    Genomics Proteomics Bioinformatics; 2013 Feb; 11(1):8-17. PubMed ID: 23453015
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transcriptome-wide analysis of N6-methyladenosine uncovers its regulatory role in gene expression in the lepidopteran Bombyx mori.
    Li B; Wang X; Li Z; Lu C; Zhang Q; Chang L; Li W; Cheng T; Xia Q; Zhao P
    Insect Mol Biol; 2019 Oct; 28(5):703-715. PubMed ID: 30957943
    [TBL] [Abstract][Full Text] [Related]  

  • 29. METTL3-dependent N
    Chien CS; Li JY; Chien Y; Wang ML; Yarmishyn AA; Tsai PH; Juan CC; Nguyen P; Cheng HM; Huo TI; Chiou SH; Chien S
    Proc Natl Acad Sci U S A; 2021 Feb; 118(7):. PubMed ID: 33579825
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Driving Chromatin Organisation through N6-methyladenosine Modification of RNA: What Do We Know and What Lies Ahead?
    Selmi T; Lanzuolo C
    Genes (Basel); 2022 Feb; 13(2):. PubMed ID: 35205384
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reversible RNA Modification N
    Zhang C; Jia G
    Genomics Proteomics Bioinformatics; 2018 Jun; 16(3):155-161. PubMed ID: 29908293
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Messenger RNA modifications: Form, distribution, and function.
    Gilbert WV; Bell TA; Schaening C
    Science; 2016 Jun; 352(6292):1408-12. PubMed ID: 27313037
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Next-generation sequencing technologies for detection of modified nucleotides in RNAs.
    Schwartz S; Motorin Y
    RNA Biol; 2017 Sep; 14(9):1124-1137. PubMed ID: 27791472
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transient N-6-Methyladenosine Transcriptome Sequencing Reveals a Regulatory Role of m6A in Splicing Efficiency.
    Louloupi A; Ntini E; Conrad T; Ørom UAV
    Cell Rep; 2018 Jun; 23(12):3429-3437. PubMed ID: 29924987
    [TBL] [Abstract][Full Text] [Related]  

  • 35. RMDisease: a database of genetic variants that affect RNA modifications, with implications for epitranscriptome pathogenesis.
    Chen K; Song B; Tang Y; Wei Z; Xu Q; Su J; de Magalhães JP; Rigden DJ; Meng J
    Nucleic Acids Res; 2021 Jan; 49(D1):D1396-D1404. PubMed ID: 33010174
    [TBL] [Abstract][Full Text] [Related]  

  • 36. N6-Methyladenosine modification of lincRNA 1281 is critically required for mESC differentiation potential.
    Yang D; Qiao J; Wang G; Lan Y; Li G; Guo X; Xi J; Ye D; Zhu S; Chen W; Jia W; Leng Y; Wan X; Kang J
    Nucleic Acids Res; 2018 May; 46(8):3906-3920. PubMed ID: 29529255
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Targeted m
    Rauch S; Dickinson BC
    Methods Enzymol; 2019; 621():1-16. PubMed ID: 31128773
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterizing 5-methylcytosine in the mammalian epitranscriptome.
    Hussain S; Aleksic J; Blanco S; Dietmann S; Frye M
    Genome Biol; 2013 Nov; 14(11):215. PubMed ID: 24286375
    [TBL] [Abstract][Full Text] [Related]  

  • 39. RBM15-mediated N6-methyladenosine modification affects COVID-19 severity by regulating the expression of multitarget genes.
    Meng Y; Zhang Q; Wang K; Zhang X; Yang R; Bi K; Chen W; Diao H
    Cell Death Dis; 2021 Jul; 12(8):732. PubMed ID: 34301919
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Illustrating the Epitranscriptome at Nucleotide Resolution Using Methylation-iCLIP (miCLIP).
    George H; Ule J; Hussain S
    Methods Mol Biol; 2017; 1562():91-106. PubMed ID: 28349456
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.