These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 23434806)

  • 1. Production of protein-rich fungal biomass in an airlift bioreactor using vinasse as substrate.
    Nitayavardhana S; Issarapayup K; Pavasant P; Khanal SK
    Bioresour Technol; 2013 Apr; 133():301-6. PubMed ID: 23434806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Innovative biorefinery concept for sugar-based ethanol industries: production of protein-rich fungal biomass on vinasse as an aquaculture feed ingredient.
    Nitayavardhana S; Khanal SK
    Bioresour Technol; 2010 Dec; 101(23):9078-85. PubMed ID: 20688513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water reclamation and value-added animal feed from corn-ethanol stillage by fungal processing.
    Rasmussen ML; Khanal SK; Pometto AL; van Leeuwen JH
    Bioresour Technol; 2014 Jan; 151():284-90. PubMed ID: 24269825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-Production of Fungal Biomass Derived Constituents and Ethanol from Citrus Wastes Free Sugars without Auxiliary Nutrients in Airlift Bioreactor.
    Satari B; Karimi K; Taherzadeh MJ; Zamani A
    Int J Mol Sci; 2016 Feb; 17(3):302. PubMed ID: 26927089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Converting corn wet-milling effluent into high-value fungal biomass in a biofilm reactor.
    Jasti N; Khanal SK; Pometto AL; van Leeuwen JH
    Biotechnol Bioeng; 2008 Dec; 101(6):1223-33. PubMed ID: 18781693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Valorization of sugar-to-ethanol process waste vinasse: A novel biorefinery approach using edible ascomycetes filamentous fungi.
    Nair RB; Taherzadeh MJ
    Bioresour Technol; 2016 Dec; 221():469-476. PubMed ID: 27668880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodiesel-derived crude glycerol bioconversion to animal feed: a sustainable option for a biodiesel refinery.
    Nitayavardhana S; Khanal SK
    Bioresour Technol; 2011 May; 102(10):5808-14. PubMed ID: 21382713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biotechnological production of lactic acid integrated with fishmeal wastewater treatment by Rhizopus oryzae.
    Huang LP; Dong T; Chen JW; Li N
    Bioprocess Biosyst Eng; 2007 Mar; 30(2):135-40. PubMed ID: 17242928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of the biorefinery concept to produce L-lactic acid from the soybean vinasse at laboratory and pilot scale.
    Karp SG; Igashiyama AH; Siqueira PF; Carvalho JC; Vandenberghe LP; Thomaz-Soccol V; Coral J; Tholozan JL; Pandey A; Soccol CR
    Bioresour Technol; 2011 Jan; 102(2):1765-72. PubMed ID: 20933391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unraveling the influence of the COD/sulfate ratio on organic matter removal and methane production from the biodigestion of sugarcane vinasse.
    Kiyuna LSM; Fuess LT; Zaiat M
    Bioresour Technol; 2017 May; 232():103-112. PubMed ID: 28214696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solid-state fermentation of palm kernel cake with Aspergillus flavus in laterally aerated moving bed bioreactor.
    Wong YP; Saw HY; Janaun J; Krishnaiah K; Prabhakar A
    Appl Biochem Biotechnol; 2011 May; 164(2):170-82. PubMed ID: 21080102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Valorization of vinasse and whey to protein and biogas through an environmental fungi-based biorefinery.
    Hashemi SS; Karimi K; Taherzadeh MJ
    J Environ Manage; 2022 Feb; 303():114138. PubMed ID: 34838385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mycoremediation of vinasse by surface response methodology and preliminary studies in air-lift bioreactors.
    Aragão MS; Menezes DB; Ramos LC; Oliveira HS; Bharagava RN; Romanholo Ferreira LF; Teixeira JA; Ruzene DS; Silva DP
    Chemosphere; 2020 Apr; 244():125432. PubMed ID: 31812763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scale-up of L-lactic acid production by mutant strain Rhizopus sp. MK-96-1196 from 0.003 m3 to 5 m3 in airlift bioreactors.
    Liu T; Miura S; Yaguchi M; Arimura T; Park EY; Okabe M
    J Biosci Bioeng; 2006 Jan; 101(1):9-12. PubMed ID: 16503284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of Aerobic and Anaerobic Biodegradation of Sugarcane Vinasse.
    Mota VT; Araújo TA; Amaral MC
    Appl Biochem Biotechnol; 2015 Jul; 176(5):1402-12. PubMed ID: 25957273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting kinetic model of biogas production and biodegradability organic materials: biogas production from vinasse at variation of COD/N ratio.
    Syaichurrozi I; Budiyono ; Sumardiono S
    Bioresour Technol; 2013 Dec; 149():390-7. PubMed ID: 24128402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep-bed solid state fermentation of sweet sorghum stalk to ethanol by thermotolerant Issatchenkia orientalis IPE 100.
    Kwon YJ; Wang F; Liu CZ
    Bioresour Technol; 2011 Dec; 102(24):11262-5. PubMed ID: 22014707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing the hydrolysis and methane production potential of mixed food waste by an effective enzymatic pretreatment.
    Kiran EU; Trzcinski AP; Liu Y
    Bioresour Technol; 2015 May; 183():47-52. PubMed ID: 25722182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioconversion of Sugarcane Vinasse into High-Added Value Products and Energy.
    Naspolini BF; Machado ACO; Cravo Junior WB; Freire DMG; Cammarota MC
    Biomed Res Int; 2017; 2017():8986165. PubMed ID: 29250551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.