BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 23434907)

  • 1. Reduced glutathione: a radioprotector or a modulator of DNA-repair activity?
    Chatterjee A
    Nutrients; 2013 Feb; 5(2):525-42. PubMed ID: 23434907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: implications for mitochondrial redox regulation and antioxidant DEFENSE.
    Beer SM; Taylor ER; Brown SE; Dahm CC; Costa NJ; Runswick MJ; Murphy MP
    J Biol Chem; 2004 Nov; 279(46):47939-51. PubMed ID: 15347644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glutathione and Glutaredoxin-Key Players in Cellular Redox Homeostasis and Signaling.
    Chai YC; Mieyal JJ
    Antioxidants (Basel); 2023 Aug; 12(8):. PubMed ID: 37627548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diamide induced shift in protein and glutathione thiol: disulfide status delays DNA rejoining after X-irradiation of human cancer cells.
    Baker MA; Hagner BA
    Biochim Biophys Acta; 1990 Jan; 1037(1):39-47. PubMed ID: 2294969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of glutathione levels on radiation-induced chromosomal DNA damage and repair in human peripheral lymphocytes.
    Pujari G; Berni A; Palitti F; Chatterjee A
    Mutat Res; 2009 Apr; 675(1-2):23-8. PubMed ID: 19386243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of endogenous thiols in protection.
    Vos O
    Adv Space Res; 1992; 12(2-3):201-7. PubMed ID: 11537009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular mechanisms and potential clinical significance of S-glutathionylation.
    Dalle-Donne I; Milzani A; Gagliano N; Colombo R; Giustarini D; Rossi R
    Antioxid Redox Signal; 2008 Mar; 10(3):445-73. PubMed ID: 18092936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of glutathione in the radiation response of mammalian cells in vitro and in vivo.
    Bump EA; Brown JM
    Pharmacol Ther; 1990; 47(1):117-36. PubMed ID: 2195553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glutathione in Protein Redox Modulation through S-Glutathionylation and S-Nitrosylation.
    Kalinina E; Novichkova M
    Molecules; 2021 Jan; 26(2):. PubMed ID: 33467703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulatory control of human cytosolic branched-chain aminotransferase by oxidation and S-glutathionylation and its interactions with redox sensitive neuronal proteins.
    Conway ME; Coles SJ; Islam MM; Hutson SM
    Biochemistry; 2008 May; 47(19):5465-79. PubMed ID: 18419134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatio-temporal changes in glutathione and thioredoxin redox couples during ionizing radiation-induced oxidative stress regulate tumor radio-resistance.
    Patwardhan RS; Sharma D; Checker R; Thoh M; Sandur SK
    Free Radic Res; 2015 Oct; 49(10):1218-32. PubMed ID: 26021764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiation response of cells during altered protein thiol redox.
    Biaglow JE; Ayene IS; Koch CJ; Donahue J; Stamato TD; Mieyal JJ; Tuttle SW
    Radiat Res; 2003 Apr; 159(4):484-94. PubMed ID: 12643793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox Regulation by Protein S-Glutathionylation: From Molecular Mechanisms to Implications in Health and Disease.
    Musaogullari A; Chai YC
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33143095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative damage of mitochondrial and nuclear DNA induced by ionizing radiation in human hepatoblastoma cells.
    Morales A; Miranda M; Sánchez-Reyes A; Biete A; Fernández-Checa JC
    Int J Radiat Oncol Biol Phys; 1998 Aug; 42(1):191-203. PubMed ID: 9747838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular mechanisms and clinical implications of reversible protein S-glutathionylation.
    Mieyal JJ; Gallogly MM; Qanungo S; Sabens EA; Shelton MD
    Antioxid Redox Signal; 2008 Nov; 10(11):1941-88. PubMed ID: 18774901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of protein function by glutathionylation.
    Ghezzi P
    Free Radic Res; 2005 Jun; 39(6):573-80. PubMed ID: 16036334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radiation-induced micronucleus formation and DNA damage in human lymphocytes and their prevention by antioxidant thiols.
    Tiwari P; Kumar A; Balakrishnan S; Kushwaha HS; Mishra KP
    Mutat Res; 2009 May; 676(1-2):62-8. PubMed ID: 19486866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular Mechanisms of Glutaredoxin Enzymes: Versatile Hubs for Thiol-Disulfide Exchange between Protein Thiols and Glutathione.
    Xiao Z; La Fontaine S; Bush AI; Wedd AG
    J Mol Biol; 2019 Jan; 431(2):158-177. PubMed ID: 30552876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parkin coregulates glutathione metabolism in adult mammalian brain.
    El Kodsi DN; Tokarew JM; Sengupta R; Lengacher NA; Chatterji A; Nguyen AP; Boston H; Jiang Q; Palmberg C; Pileggi C; Holterman CE; Shutinoski B; Li J; Fehr TK; LaVoie MJ; Ratan RR; Shaw GS; Takanashi M; Hattori N; Kennedy CR; Harper ME; Holmgren A; Tomlinson JJ; Schlossmacher MG
    Acta Neuropathol Commun; 2023 Jan; 11(1):19. PubMed ID: 36691076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of glutathione, glutathione transferase, and glutaredoxin in regulation of redox-dependent processes.
    Kalinina EV; Chernov NN; Novichkova MD
    Biochemistry (Mosc); 2014 Dec; 79(13):1562-83. PubMed ID: 25749165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.