BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 23435002)

  • 1. Native fluorescence spectra of human cancerous and normal breast tissues analyzed with non-negative constraint methods.
    Pu Y; Wang W; Yang Y; Alfano RR
    Appl Opt; 2013 Feb; 52(6):1293-301. PubMed ID: 23435002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical detection of meat spoilage using fluorescence spectroscopy with selective excitation wavelength.
    Pu Y; Wang W; Alfano RR
    Appl Spectrosc; 2013 Feb; 67(2):210-3. PubMed ID: 23622441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Key native fluorophores analysis of human breast cancer tissues using Gram-Schmidt subspace method.
    Pu Y; Sordillo LA; Yang Y; Alfano RR
    Opt Lett; 2014 Dec; 39(24):6787-90. PubMed ID: 25502997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes of collagen and nicotinamide adenine dinucleotide in human cancerous and normal prostate tissues studied using native fluorescence spectroscopy with selective excitation wavelength.
    Pu Y; Wang W; Tang G; Alfano RR
    J Biomed Opt; 2010; 15(4):047008. PubMed ID: 20799839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation coefficient mapping in fluorescence spectroscopy: tissue classification for cancer detection.
    Crowell E; Wang G; Cox J; Platz CP; Geng L
    Anal Chem; 2005 Mar; 77(5):1368-75. PubMed ID: 15732920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stokes shift spectroscopy pilot study for cancerous and normal prostate tissues.
    Ebenezar J; Pu Y; Wang WB; Liu CH; Alfano RR
    Appl Opt; 2012 Jun; 51(16):3642-9. PubMed ID: 22695604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization and diagnosis of cancer by native fluorescence spectroscopy of human urine.
    Rajasekaran R; Aruna PR; Koteeswaran D; Padmanabhan L; Muthuvelu K; Rai RR; Thamilkumar P; Murali Krishna C; Ganesan S
    Photochem Photobiol; 2013; 89(2):483-91. PubMed ID: 22971002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of multiexcitation fluorescence and diffuse reflectance spectroscopy for the diagnosis of breast cancer (March 2003).
    Palmer GM; Zhu C; Breslin TM; Xu F; Gilchrist KW; Ramanujam N
    IEEE Trans Biomed Eng; 2003 Nov; 50(11):1233-42. PubMed ID: 14619993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Native fluorescence spectroscopic evaluation of chemotherapeutic effects on malignant cells using nonnegative matrix factorization analysis.
    Pu Y; Tang GC; Wang WB; Savage HE; Schantz SP; Alfano RR
    Technol Cancer Res Treat; 2011 Apr; 10(2):113-20. PubMed ID: 21381789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical spectral fingerprints of tissues from patients with different breast cancer histologies using a novel fluorescence spectroscopic device.
    Sordillo LA; Pu Y; Sordillo PP; Budansky Y; Alfano RR
    Technol Cancer Res Treat; 2013 Oct; 12(5):455-61. PubMed ID: 23547972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Fluorescence spectral characteristics of human blood and its endogenous fluorophores].
    Li BH; Zhang ZX; Xie SS; Chen R
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Jul; 26(7):1310-3. PubMed ID: 17020047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diagnostic potential of Stokes Shift spectroscopy of breast and prostate tissues-- a preliminary pilot study.
    Ebenezar J; Pu Y; Liu CH; Wang WB; Alfano RR
    Technol Cancer Res Treat; 2011 Apr; 10(2):153-61. PubMed ID: 21381793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomarkers spectral subspace for cancer detection.
    Sun Y; Pu Y; Yang Y; Alfano RR
    J Biomed Opt; 2012 Oct; 17(10):107005. PubMed ID: 23052564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stokes shift spectroscopic analysis of multifluorophores for human cancer detection in breast and prostate tissues.
    Pu Y; Wang W; Yang Y; Alfano RR
    J Biomed Opt; 2013 Jan; 18(1):17005. PubMed ID: 23296086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diagnosis of breast cancer using diffuse reflectance spectroscopy: Comparison of a Monte Carlo versus partial least squares analysis based feature extraction technique.
    Zhu C; Palmer GM; Breslin TM; Harter J; Ramanujam N
    Lasers Surg Med; 2006 Aug; 38(7):714-24. PubMed ID: 16799981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectroscopic detection and evaluation of morphologic and biochemical changes in early human oral carcinoma.
    Müller MG; Valdez TA; Georgakoudi I; Backman V; Fuentes C; Kabani S; Laver N; Wang Z; Boone CW; Dasari RR; Shapshay SM; Feld MS
    Cancer; 2003 Apr; 97(7):1681-92. PubMed ID: 12655525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterizing breast cancer tissues through the spectral correlation properties of polarized fluorescence.
    Gharekhan AH; Arora S; Mayya KB; Panigrahi PK; Sureshkumar MB; Pradhan A
    J Biomed Opt; 2008; 13(5):054063. PubMed ID: 19021441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stokes shift spectroscopy highlights differences of cancerous and normal human tissues.
    Pu Y; Wang W; Yang Y; Alfano RR
    Opt Lett; 2012 Aug; 37(16):3360-2. PubMed ID: 23381257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laser tissue welding analyzed using fluorescence, Stokes shift spectroscopy, and Huang-Rhys parameter.
    Sriramoju V; Alfano RR
    J Biophotonics; 2012 Feb; 5(2):185-93. PubMed ID: 22076914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo native fluorescence spectroscopy and nicotinamide adinine dinucleotide/flavin adenine dinucleotide reduction and oxidation states of oral submucous fibrosis for chemopreventive drug monitoring.
    Sivabalan S; Vedeswari CP; Jayachandran S; Koteeswaran D; Pravda C; Aruna PR; Ganesan S
    J Biomed Opt; 2010; 15(1):017010. PubMed ID: 20210484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.