These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
91 related articles for article (PubMed ID: 23435117)
1. Does random tree puzzle produce Yule-Harding trees in the many-taxon limit? Zhu S; Steel M Math Biosci; 2013 May; 243(1):109-16. PubMed ID: 23435117 [TBL] [Abstract][Full Text] [Related]
2. Random Tree-Puzzle leads to the Yule-Harding distribution. Vinh le S; Fuehrer A; von Haeseler A Mol Biol Evol; 2011 Feb; 28(2):873-7. PubMed ID: 20705907 [TBL] [Abstract][Full Text] [Related]
3. Theoretical foundation of the balanced minimum evolution method of phylogenetic inference and its relationship to weighted least-squares tree fitting. Desper R; Gascuel O Mol Biol Evol; 2004 Mar; 21(3):587-98. PubMed ID: 14694080 [TBL] [Abstract][Full Text] [Related]
4. On cherry and pitchfork distributions of random rooted and unrooted phylogenetic trees. Choi KP; Thompson A; Wu T Theor Popul Biol; 2020 Apr; 132():92-104. PubMed ID: 32135170 [TBL] [Abstract][Full Text] [Related]
5. The most parsimonious tree for random data. Fischer M; Galla M; Herbst L; Steel M Mol Phylogenet Evol; 2014 Nov; 80():165-8. PubMed ID: 25079136 [TBL] [Abstract][Full Text] [Related]
6. On asymptotic joint distributions of cherries and pitchforks for random phylogenetic trees. Choi KP; Kaur G; Wu T J Math Biol; 2021 Sep; 83(4):40. PubMed ID: 34554333 [TBL] [Abstract][Full Text] [Related]
7. Root location in random trees: a polarity property of all sampling consistent phylogenetic models except one. Steel M Mol Phylogenet Evol; 2012 Oct; 65(1):345-8. PubMed ID: 22772025 [TBL] [Abstract][Full Text] [Related]
8. On joint subtree distributions under two evolutionary models. Wu T; Choi KP Theor Popul Biol; 2016 Apr; 108():13-23. PubMed ID: 26607430 [TBL] [Abstract][Full Text] [Related]
9. On statistical tests of phylogenetic tree imbalance: the Sackin and other indices revisited. Blum MG; François O Math Biosci; 2005 Jun; 195(2):141-53. PubMed ID: 15893336 [TBL] [Abstract][Full Text] [Related]
10. Equality of Shapley value and fair proportion index in phylogenetic trees. Fuchs M; Jin EY J Math Biol; 2015 Nov; 71(5):1133-47. PubMed ID: 25487179 [TBL] [Abstract][Full Text] [Related]
11. Majority rule has transition ratio 4 on Yule trees under a 2-state symmetric model. Mossel E; Steel M J Theor Biol; 2014 Nov; 360():315-318. PubMed ID: 25108194 [TBL] [Abstract][Full Text] [Related]
12. Topology and inference for Yule trees with multiple states. Popovic L; Rivas M J Math Biol; 2016 Nov; 73(5):1251-1291. PubMed ID: 27009067 [TBL] [Abstract][Full Text] [Related]
13. On the convergence of the maximum likelihood estimator for the transition rate under a 2-state symmetric model. Ho LST; Dinh V; Matsen FA; Suchard MA J Math Biol; 2020 Mar; 80(4):1119-1138. PubMed ID: 31754778 [TBL] [Abstract][Full Text] [Related]
14. Maximum parsimony on subsets of taxa. Fischer M; Thatte BD J Theor Biol; 2009 Sep; 260(2):290-3. PubMed ID: 19538973 [TBL] [Abstract][Full Text] [Related]
15. Ancestral state estimation and taxon sampling density. Salisbury BA; Kim J Syst Biol; 2001 Aug; 50(4):557-64. PubMed ID: 12116653 [TBL] [Abstract][Full Text] [Related]
16. Estimating species trees using approximate Bayesian computation. Fan HH; Kubatko LS Mol Phylogenet Evol; 2011 May; 59(2):354-63. PubMed ID: 21397706 [TBL] [Abstract][Full Text] [Related]
17. Gene tree distributions under the coalescent process. Degnan JH; Salter LA Evolution; 2005 Jan; 59(1):24-37. PubMed ID: 15792224 [TBL] [Abstract][Full Text] [Related]
18. Probability distributions of ancestries and genealogical distances on stochastically generated rooted binary trees. Mulder WH J Theor Biol; 2011 Jul; 280(1):139-45. PubMed ID: 21527261 [TBL] [Abstract][Full Text] [Related]