These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 23435518)

  • 1. Energetics of liposomes encapsulating silica nanoparticles.
    Baowan D; Peuschel H; Kraegeloh A; Helms V
    J Mol Model; 2013 Jun; 19(6):2459-72. PubMed ID: 23435518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrostatically mediated liposome fusion and lipid exchange with a nanoparticle-supported bilayer for control of surface charge, drug containment, and delivery.
    Liu J; Jiang X; Ashley C; Brinker CJ
    J Am Chem Soc; 2009 Jun; 131(22):7567-9. PubMed ID: 19445508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anionic liposome template synthesis of raspberry-like hollow silica particle under ambient conditions with basic catalyst.
    Ishii H; Sato K; Nagao D; Konno M
    Colloids Surf B Biointerfaces; 2012 Apr; 92():372-6. PubMed ID: 22169474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Native silica nanoparticles are powerful membrane disruptors.
    Alkhammash HI; Li N; Berthier R; de Planque MR
    Phys Chem Chem Phys; 2015 Jun; 17(24):15547-60. PubMed ID: 25623776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Porous nanoparticle supported lipid bilayers (protocells) as delivery vehicles.
    Liu J; Stace-Naughton A; Jiang X; Brinker CJ
    J Am Chem Soc; 2009 Feb; 131(4):1354-5. PubMed ID: 19173660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insertion of nanoparticle clusters into vesicle bilayers.
    Bonnaud C; Monnier CA; Demurtas D; Jud C; Vanhecke D; Montet X; Hovius R; Lattuada M; Rothen-Rutishauser B; Petri-Fink A
    ACS Nano; 2014 Apr; 8(4):3451-60. PubMed ID: 24611878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracellular trafficking of particles inside endosomal vesicles is regulated by particle size.
    Aoyama M; Yoshioka Y; Arai Y; Hirai H; Ishimoto R; Nagano K; Higashisaka K; Nagai T; Tsutsumi Y
    J Control Release; 2017 Aug; 260():183-193. PubMed ID: 28619623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Internalization of silica nanoparticles into fluid liposomes: formation of interesting hybrid colloids.
    Michel R; Kesselman E; Plostica T; Danino D; Gradzielski M
    Angew Chem Int Ed Engl; 2014 Nov; 53(46):12441-5. PubMed ID: 25257684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium molybdate nanoparticles formation in egg phosphatidyl choline based liposome caused by liposome fusion.
    Yamasaki S; Kurita S; Ochiai A; Hashimoto M; Sueki K; Utsunomiya S
    J Colloid Interface Sci; 2018 Nov; 530():473-480. PubMed ID: 29990783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of supported lipid bilayers on silica: relation to lipid phase transition temperature and liposome size.
    Jing Y; Trefna H; Persson M; Kasemo B; Svedhem S
    Soft Matter; 2014 Jan; 10(1):187-95. PubMed ID: 24651504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mesoporous silica nanoparticle nanocarriers: biofunctionality and biocompatibility.
    Tarn D; Ashley CE; Xue M; Carnes EC; Zink JI; Brinker CJ
    Acc Chem Res; 2013 Mar; 46(3):792-801. PubMed ID: 23387478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Liposome supported metal oxide nanoparticles: interaction mechanism, light controlled content release, and intracellular delivery.
    Wang F; Liu J
    Small; 2014 Oct; 10(19):3927-31. PubMed ID: 24861966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental aspects of colloidal interactions in mixed systems of liposome and inorganic nanoparticle and their applications.
    Michel R; Gradzielski M
    Int J Mol Sci; 2012; 13(9):11610-11642. PubMed ID: 23109874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface-enhanced Raman scattering measurement from a lipid bilayer encapsulating a single decahedral nanoparticle mediated by an optical trap.
    Wright AJ; Richens JL; Bramble JP; Cathcart N; Kitaev V; O'Shea P; Hudson AJ
    Nanoscale; 2016 Sep; 8(36):16395-16404. PubMed ID: 27722713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of liposomes containing small gold nanoparticles using electrostatic interactions.
    Dichello GA; Fukuda T; Maekawa T; Whitby RLD; Mikhalovsky SV; Alavijeh M; Pannala AS; Sarker DK
    Eur J Pharm Sci; 2017 Jul; 105():55-63. PubMed ID: 28476616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relevance of charges and polymer mechanical stiffness in the mechanism and kinetics of formation of liponanoparticles probed by the supported bilayer model approach.
    N'Diaye M; Michel JP; Rosilio V
    Phys Chem Chem Phys; 2019 Feb; 21(8):4306-4319. PubMed ID: 30724271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Constant pressure-controlled extrusion method for the preparation of Nano-sized lipid vesicles.
    Morton LA; Saludes JP; Yin H
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22760481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coverage and disruption of phospholipid membranes by oxide nanoparticles.
    Pera H; Nolte TM; Leermakers FA; Kleijn JM
    Langmuir; 2014 Dec; 30(48):14581-90. PubMed ID: 25390582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unique Calibrators Derived from Fluorescence-Activated Nanoparticle Sorting for Flow Cytometric Size Estimation of Artificial Vesicles: Possibilities and Limitations.
    Simonsen JB; Larsen JB; Hempel C; Eng N; Fossum A; Andresen TL
    Cytometry A; 2019 Aug; 95(8):917-924. PubMed ID: 31120635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of superparamagnetic iron oxide nanoparticles on fluidity and phase transition of phosphatidylcholine liposomal membranes.
    Santhosh PB; Drašler B; Drobne D; Kreft ME; Kralj S; Makovec D; Ulrih NP
    Int J Nanomedicine; 2015; 10():6089-103. PubMed ID: 26491286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.