BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 23435878)

  • 21. Insights into the Metabolism of Oleaginous
    Alvarez HM; Herrero OM; Silva RA; Hernández MA; Lanfranconi MP; Villalba MS
    Appl Environ Microbiol; 2019 Sep; 85(18):. PubMed ID: 31324625
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vitro effects of sterculic acid on lipid biosynthesis in Rhodococcus opacus strain PD630 and isolation of mutants defective in fatty acid desaturation.
    Wältermann M; Steinbüchel A
    FEMS Microbiol Lett; 2000 Sep; 190(1):45-50. PubMed ID: 10981688
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Engineering L-arabinose metabolism in triacylglycerol-producing Rhodococcus opacus for lignocellulosic fuel production.
    Kurosawa K; Plassmeier J; Kalinowski J; Rückert C; Sinskey AJ
    Metab Eng; 2015 Jul; 30():89-95. PubMed ID: 25936337
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Using 1-propanol to significantly enhance the production of valuable odd-chain fatty acids by Rhodococcus opacus PD630.
    Zhang LS; Xu P; Chu MY; Zong MH; Yang JG; Lou WY
    World J Microbiol Biotechnol; 2019 Oct; 35(11):164. PubMed ID: 31637528
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630.
    Alvarez HM; Mayer F; Fabritius D; Steinbüchel A
    Arch Microbiol; 1996 Jun; 165(6):377-86. PubMed ID: 8661931
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rhodococcus opacus B4: a promising bacterium for production of biofuels and biobased chemicals.
    Castro AR; Rocha I; Alves MM; Pereira MA
    AMB Express; 2016 Dec; 6(1):35. PubMed ID: 27179529
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Integrated omics study delineates the dynamics of lipid droplets in Rhodococcus opacus PD630.
    Chen Y; Ding Y; Yang L; Yu J; Liu G; Wang X; Zhang S; Yu D; Song L; Zhang H; Zhang C; Huo L; Huo C; Wang Y; Du Y; Zhang H; Zhang P; Na H; Xu S; Zhu Y; Xie Z; He T; Zhang Y; Wang G; Fan Z; Yang F; Liu H; Wang X; Zhang X; Zhang MQ; Li Y; Steinbüchel A; Fujimoto T; Cichello S; Yu J; Liu P
    Nucleic Acids Res; 2014 Jan; 42(2):1052-64. PubMed ID: 24150943
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A key
    Xue L; Zhao Y; Li L; Rao X; Chen X; Ma F; Yu H; Xie S
    Appl Environ Microbiol; 2023 Oct; 89(10):e0052223. PubMed ID: 37800939
    [No Abstract]   [Full Text] [Related]  

  • 29. Cloning and characterization of a gene involved in triacylglycerol biosynthesis and identification of additional homologous genes in the oleaginous bacterium Rhodococcus opacus PD630.
    Alvarez AF; Alvarez HM; Kalscheuer R; Wältermann M; Steinbüchel A
    Microbiology (Reading); 2008 Aug; 154(Pt 8):2327-2335. PubMed ID: 18667565
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Engineering levoglucosan metabolic pathway in Rhodococcus jostii RHA1 for lipid production.
    Xiong X; Lian J; Yu X; Garcia-Perez M; Chen S
    J Ind Microbiol Biotechnol; 2016 Nov; 43(11):1551-1560. PubMed ID: 27558782
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Rhodococcus opacus TadD protein mediates triacylglycerol metabolism by regulating intracellular NAD(P)H pools.
    MacEachran DP; Sinskey AJ
    Microb Cell Fact; 2013 Nov; 12():104. PubMed ID: 24209886
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Production of carotenoids and lipids by Rhodococcus opacus PD630 in batch and fed-batch culture.
    Thanapimmetha A; Suwaleerat T; Saisriyoot M; Chisti Y; Srinophakun P
    Bioprocess Biosyst Eng; 2017 Jan; 40(1):133-143. PubMed ID: 27646907
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microbial lipid production by oleaginous Rhodococci cultured in lignocellulosic autohydrolysates.
    Wei Z; Zeng G; Huang F; Kosa M; Sun Q; Meng X; Huang D; Ragauskas AJ
    Appl Microbiol Biotechnol; 2015 Sep; 99(17):7369-77. PubMed ID: 26142385
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biomass and lipid production by Rhodococcus opacus PD630 in molasses-based media with and without osmotic-stress.
    Saisriyoot M; Thanapimmetha A; Suwaleerat T; Chisti Y; Srinophakun P
    J Biotechnol; 2019 May; 297():1-8. PubMed ID: 30853637
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Ralstonia eutropha H16 phasin PhaP1 is targeted to intracellular triacylglycerol inclusions in Rhodococcus opacus PD630 and Mycobacterium smegmatis mc2155, and provides an anchor to target other proteins.
    Hänisch J; Wältermann M; Robenek H; Steinbüchel A
    Microbiology (Reading); 2006 Nov; 152(Pt 11):3271-3280. PubMed ID: 17074898
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioconversion of lignin model compounds with oleaginous Rhodococci.
    Kosa M; Ragauskas AJ
    Appl Microbiol Biotechnol; 2012 Jan; 93(2):891-900. PubMed ID: 22159607
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Carbon source modify lipids composition of Rhodococcus opacus intended for infant formula.
    Zhang LS; Chu MY; Zong MH; Yang JG; Lou WY
    J Biotechnol; 2020 Aug; 319():8-14. PubMed ID: 32470464
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improved site-specific mutagenesis in Rhodococcus opacus using a novel conditional suicide plasmid.
    Jain G; Ertesvåg H
    Appl Microbiol Biotechnol; 2022 Nov; 106(21):7129-7138. PubMed ID: 36194264
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineering of an L-arabinose metabolic pathway in Rhodococcus jostii RHA1 for biofuel production.
    Xiong X; Wang X; Chen S
    J Ind Microbiol Biotechnol; 2016 Jul; 43(7):1017-25. PubMed ID: 27143134
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative transcriptomics elucidates adaptive phenol tolerance and utilization in lipid-accumulating Rhodococcus opacus PD630.
    Yoneda A; Henson WR; Goldner NK; Park KJ; Forsberg KJ; Kim SJ; Pesesky MW; Foston M; Dantas G; Moon TS
    Nucleic Acids Res; 2016 Mar; 44(5):2240-54. PubMed ID: 26837573
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.