BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 23435878)

  • 41. Comparative transcriptomics elucidates adaptive phenol tolerance and utilization in lipid-accumulating Rhodococcus opacus PD630.
    Yoneda A; Henson WR; Goldner NK; Park KJ; Forsberg KJ; Kim SJ; Pesesky MW; Foston M; Dantas G; Moon TS
    Nucleic Acids Res; 2016 Mar; 44(5):2240-54. PubMed ID: 26837573
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Increasing lipid production using an NADP
    Hernández MA; Alvarez HM
    Microbiology (Reading); 2019 Jan; 165(1):4-14. PubMed ID: 30372408
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A concerted systems biology analysis of phenol metabolism in Rhodococcus opacus PD630.
    Roell GW; Carr RR; Campbell T; Shang Z; Henson WR; Czajka JJ; Martín HG; Zhang F; Foston M; Dantas G; Moon TS; Tang YJ
    Metab Eng; 2019 Sep; 55():120-130. PubMed ID: 31271774
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Potential of Rhodococcus strains for biotechnological vanillin production from ferulic acid and eugenol.
    Plaggenborg R; Overhage J; Loos A; Archer JA; Lessard P; Sinskey AJ; Steinbüchel A; Priefert H
    Appl Microbiol Biotechnol; 2006 Oct; 72(4):745-55. PubMed ID: 16421716
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Analysis and optimization of triacylglycerol synthesis in novel oleaginous Rhodococcus and Streptomyces strains isolated from desert soil.
    Röttig A; Hauschild P; Madkour MH; Al-Ansari AM; Almakishah NH; Steinbüchel A
    J Biotechnol; 2016 May; 225():48-56. PubMed ID: 27034020
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Triacylglycerol accumulation and oxidative stress in Rhodococcus species: differential effects of pro-oxidants on lipid metabolism.
    Urbano SB; Di Capua C; Cortez N; Farías ME; Alvarez HM
    Extremophiles; 2014 Mar; 18(2):375-84. PubMed ID: 24420608
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Engineering xylose metabolism in triacylglycerol-producing Rhodococcus opacus for lignocellulosic fuel production.
    Kurosawa K; Wewetzer SJ; Sinskey AJ
    Biotechnol Biofuels; 2013 Sep; 6(1):134. PubMed ID: 24041310
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Identification of a novel ATP-binding cassette transporter involved in long-chain fatty acid import and its role in triacylglycerol accumulation in Rhodococcus jostii RHA1.
    Villalba MS; Alvarez HM
    Microbiology (Reading); 2014 Jul; 160(Pt 7):1523-1532. PubMed ID: 24739215
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Rhodococcus and Yarrowia-Based Lipid Production Using Lignin-Containing Industrial Residues.
    Le RK; Mahan KM; Ragauskas AJ
    Methods Mol Biol; 2019; 1995():103-120. PubMed ID: 31148123
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Triacylglycerols in prokaryotic microorganisms.
    Alvarez HM; Steinbüchel A
    Appl Microbiol Biotechnol; 2002 Dec; 60(4):367-76. PubMed ID: 12466875
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Optimization of macroelement concentrations, pH and osmolarity for triacylglycerol accumulation in Rhodococcus opacus strain PD630.
    Janßen HJ; Ibrahim MH; Bröker D; Steinbüchel A
    AMB Express; 2013; 3():38. PubMed ID: 23855965
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Physiological and morphological responses of the soil bacterium Rhodococcus opacus strain PD630 to water stress.
    Alvarez HM; Silva RA; Cesari AC; Zamit AL; Peressutti SR; Reichelt R; Keller U; Malkus U; Rasch C; Maskow T; Mayer F; Steinbüchel A
    FEMS Microbiol Ecol; 2004 Nov; 50(2):75-86. PubMed ID: 19712366
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Preparative isolation of lipid inclusions from Rhodococcus opacus and Rhodococcus ruber and identification of granule-associated proteins.
    Kalscheuer R; Wältermann M; Alvarez M; Steinbüchel A
    Arch Microbiol; 2001 Dec; 177(1):20-8. PubMed ID: 11797040
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Development of Chemical and Metabolite Sensors for Rhodococcus opacus PD630.
    DeLorenzo DM; Henson WR; Moon TS
    ACS Synth Biol; 2017 Oct; 6(10):1973-1978. PubMed ID: 28745867
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mechanism of the oxidative stress-mediated increase in lipid accumulation by the bacterium, R. opacus PD630: Experimental analysis and genome-scale metabolic modeling.
    Sundararaghavan A; Mukherjee A; Sahoo S; Suraishkumar GK
    Biotechnol Bioeng; 2020 Jun; 117(6):1779-1788. PubMed ID: 32159222
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biosynthesis of storage compounds by Rhodococcus jostii RHA1 and global identification of genes involved in their metabolism.
    Hernández MA; Mohn WW; Martínez E; Rost E; Alvarez AF; Alvarez HM
    BMC Genomics; 2008 Dec; 9():600. PubMed ID: 19077282
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Molecular Toolkit for Gene Expression Control and Genome Modification in Rhodococcus opacus PD630.
    DeLorenzo DM; Rottinghaus AG; Henson WR; Moon TS
    ACS Synth Biol; 2018 Feb; 7(2):727-738. PubMed ID: 29366319
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Co-fermentation of cellobiose and xylose by Lipomyces starkeyi for lipid production.
    Gong Z; Wang Q; Shen H; Hu C; Jin G; Zhao ZK
    Bioresour Technol; 2012 Aug; 117():20-4. PubMed ID: 22609709
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Production of added value bacterial lipids through valorisation of hydrocarbon-contaminated cork waste.
    Castro AR; Guimarães M; Oliveira JV; Pereira MA
    Sci Total Environ; 2017 Dec; 605-606():677-682. PubMed ID: 28675877
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Label-free and redox proteomic analyses of the triacylglycerol-accumulating Rhodococcus jostii RHA1.
    Dávila Costa JS; Herrero OM; Alvarez HM; Leichert L
    Microbiology (Reading); 2015 Mar; 161(Pt 3):593-610. PubMed ID: 25564499
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.