BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 23435976)

  • 1. Genetic examination of initial amino acid oxidation and glutamate catabolism in the hyperthermophilic archaeon Thermococcus kodakarensis.
    Yokooji Y; Sato T; Fujiwara S; Imanaka T; Atomi H
    J Bacteriol; 2013 May; 195(9):1940-8. PubMed ID: 23435976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic examination and mass balance analysis of pyruvate/amino acid oxidation pathways in the hyperthermophilic archaeon Thermococcus kodakarensis.
    Nohara K; Orita I; Nakamura S; Imanaka T; Fukui T
    J Bacteriol; 2014 Nov; 196(22):3831-9. PubMed ID: 25157082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TK1211 Encodes an Amino Acid Racemase towards Leucine and Methionine in the Hyperthermophilic Archaeon Thermococcus kodakarensis.
    Zheng RC; Lu XF; Tomita H; Hachisuka SI; Zheng YG; Atomi H
    J Bacteriol; 2021 Mar; 203(7):. PubMed ID: 33468590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of two members among the five ADP-forming acyl coenzyme A (Acyl-CoA) synthetases reveals the presence of a 2-(Imidazol-4-yl)acetyl-CoA synthetase in Thermococcus kodakarensis.
    Awano T; Wilming A; Tomita H; Yokooji Y; Fukui T; Imanaka T; Atomi H
    J Bacteriol; 2014 Jan; 196(1):140-7. PubMed ID: 24163338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The TK0271 Protein Activates Transcription of Aromatic Amino Acid Biosynthesis Genes in the Hyperthermophilic Archaeon Thermococcus kodakarensis.
    Yamamoto Y; Kanai T; Kaneseki T; Atomi H
    mBio; 2019 Sep; 10(5):. PubMed ID: 31506306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extremely thermostable glutamate dehydrogenase (GDH) from the freshwater archaeon Thermococcus waiotapuensis: cloning and comparison with two marine hyperthermophilic GDHs.
    Lee MK; González JM; Robb FT
    Extremophiles; 2002 Apr; 6(2):151-9. PubMed ID: 12013436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolism Dealing with Thermal Degradation of NAD
    Hachisuka SI; Sato T; Atomi H
    J Bacteriol; 2017 Oct; 199(19):. PubMed ID: 28652302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphoenolpyruvate synthase plays an essential role for glycolysis in the modified Embden-Meyerhof pathway in Thermococcus kodakarensis.
    Imanaka H; Yamatsu A; Fukui T; Atomi H; Imanaka T
    Mol Microbiol; 2006 Aug; 61(4):898-909. PubMed ID: 16879645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel ADP-forming succinyl-CoA synthetase in Thermococcus kodakaraensis structurally related to the archaeal nucleoside diphosphate-forming acetyl-CoA synthetases.
    Shikata K; Fukui T; Atomi H; Imanaka T
    J Biol Chem; 2007 Sep; 282(37):26963-26970. PubMed ID: 17640871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Structurally Novel Lipoyl Synthase in the Hyperthermophilic Archaeon Thermococcus kodakarensis.
    Jin JQ; Hachisuka SI; Sato T; Fujiwara T; Atomi H
    Appl Environ Microbiol; 2020 Nov; 86(23):. PubMed ID: 32978128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and characterization of an archaeal ketopantoate reductase and its involvement in regulation of coenzyme A biosynthesis.
    Tomita H; Imanaka T; Atomi H
    Mol Microbiol; 2013 Oct; 90(2):307-21. PubMed ID: 23941541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inorganic nitrogen assimilation in yeasts: alteration in enzyme activities associated with changes in cultural conditions and growth phase.
    Thomulka KW; Moat AG
    J Bacteriol; 1972 Jan; 109(1):25-33. PubMed ID: 4400414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical and genetic examination of two aminotransferases from the hyperthermophilic archaeon
    Su Y; Michimori Y; Atomi H
    Front Microbiol; 2023; 14():1126218. PubMed ID: 36891395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of Dephospho-Coenzyme A (Dephospho-CoA) Kinase in Thermococcus kodakarensis and Elucidation of the Entire CoA Biosynthesis Pathway in Archaea.
    Shimosaka T; Makarova KS; Koonin EV; Atomi H
    mBio; 2019 Jul; 10(4):. PubMed ID: 31337720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization and gene deletion analysis of four homologues of group 3 pyridine nucleotide disulfide oxidoreductases from Thermococcus kodakarensis.
    Harnvoravongchai P; Kobori H; Orita I; Nakamura S; Imanaka T; Fukui T
    Extremophiles; 2014 May; 18(3):603-16. PubMed ID: 24723088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An archaeal glutamate decarboxylase homolog functions as an aspartate decarboxylase and is involved in β-alanine and coenzyme A biosynthesis.
    Tomita H; Yokooji Y; Ishibashi T; Imanaka T; Atomi H
    J Bacteriol; 2014 Mar; 196(6):1222-30. PubMed ID: 24415726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of NADH oxidase/NADPH polysulfide oxidoreductase and its unexpected participation in oxygen sensitivity in an anaerobic hyperthermophilic archaeon.
    Kobori H; Ogino M; Orita I; Nakamura S; Imanaka T; Fukui T
    J Bacteriol; 2010 Oct; 192(19):5192-202. PubMed ID: 20675490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of an archaeal malic enzyme from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1.
    Fukuda W; Ismail YS; Fukui T; Atomi H; Imanaka T
    Archaea; 2005 May; 1(5):293-301. PubMed ID: 15876562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An ornithine ω-aminotransferase required for growth in the absence of exogenous proline in the archaeon
    Zheng RC; Hachisuka SI; Tomita H; Imanaka T; Zheng YG; Nishiyama M; Atomi H
    J Biol Chem; 2018 Mar; 293(10):3625-3636. PubMed ID: 29352105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyperthermophilic Archaeon Thermococcus kodakarensis Utilizes a Four-Step Pathway for NAD
    Hachisuka SI; Sato T; Atomi H
    J Bacteriol; 2018 Jun; 200(11):. PubMed ID: 29555696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.